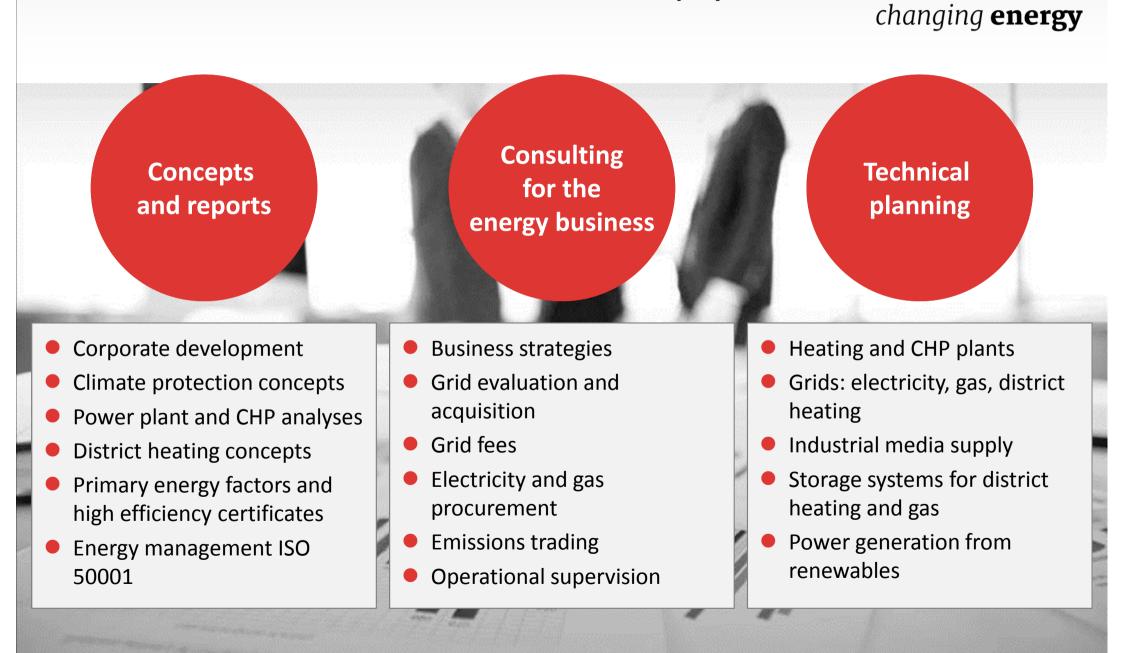
Potentials and obstacles for PtH applications

case studies on company and regional level


Energy Storage Europe 14.03.2018

EEB ENERKO Energiewirtschaftliche Beratung GmbH

EEB ENERKO: main consulting activities

Located in Aldenhoven near Aachen and Berlin • 40 employees

Agenda

- Present situation and regulatory framework
- PtH applications case studies
 - Company level conditions for profitable operation
 - State level contribution of sector coupling: case study for the federal state of Sachsen-Anhalt
- conclusions

Situation 2018 in Germany

Renewable Power

- Share of REN has reached 36% in 2017
- Ren power exceeds demand in electricity sector more and more
 - 5 TWh renewable power have to be cut due to congestion management (Einspeisemanagement)
 Strong increase since 2013
 - Export increased to 60 TWh Germany is net export country nearly all around the year
 - Number of grid safety management measures increased likewise
 - "Spitzenkappung" allows grid providers to adopt REN cut off (up to 3%) as a permanent measure to reduce grid expansion measures
 => locally usable renewable excess production will remain and increase in the next decades

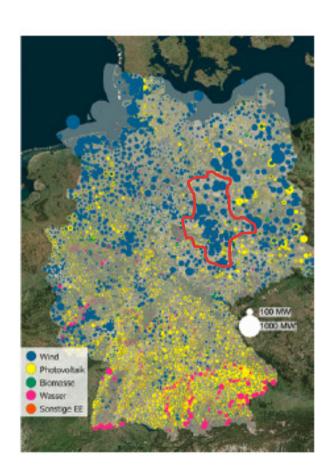
Regulatory framework

Power to Heat: PtH is classified as final use

Potentials and obstacles for PtH applications

Agenda

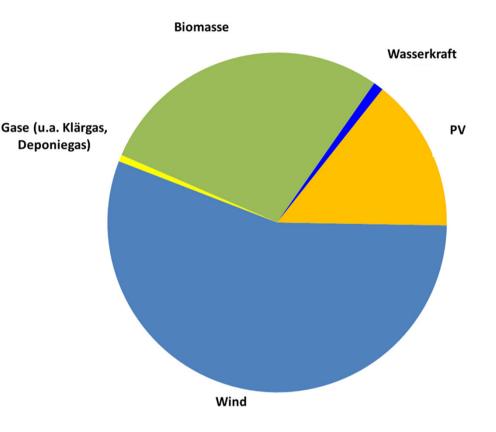
- Present situation and regulatory framework
- PtH applications case studies
 - Company level conditions for profitable operation
 - State level contribution of sector coupling: case study for the federal state of Sachsen-Anhalt
- conclusions


Study on behalf of the "Ministerium für Umwelt, Landwirtschaft und Energie in Sachsen-Anhalt"

Case study PtH

- Project team: EEB ENERKO & Mitnetz Strom
- Project scope:
 - **REN** scenarios for Sachsen-Anhalt 1)
 - Analysis and prognosis of the heat market 2)
 - 3) Contribution of PtH to integrate renewables
 - Supportive regulatory Framework? 4)
- > More informationen : lena.sachsen-anhalt.de/lena/ download/

www.enerko.de/wp-content/uploads/2017/12/Endbericht_PtH_web.pdf

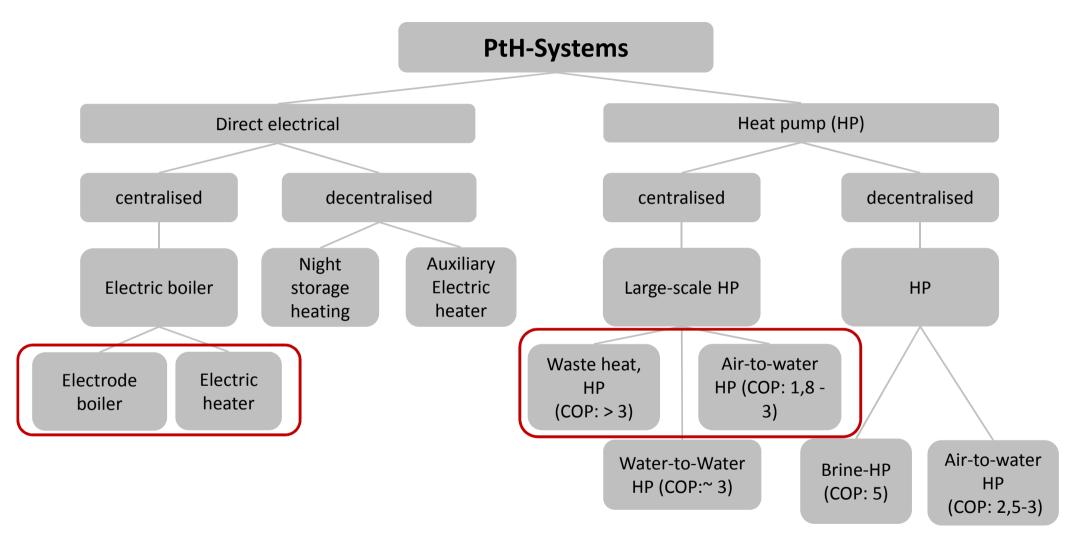


14.03.2018

Renewable Power in Sachsen Anhalt

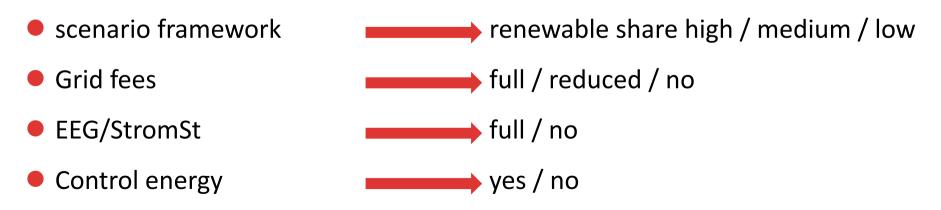
Status Quo

- 13 TWh renewable power in 2015 in Sachsen Anhalt (~60% of gross consumption)
- about 60% share of wind energy
- about 1 % as excess power
 - 🗕 2015: 130 GWh
 - 2016: 150 GWh
- High share of heat grid base heat supply (about 2600 GWh heat supply) even in smaller cities
- High industrial heat demand



Power to Heat technologies

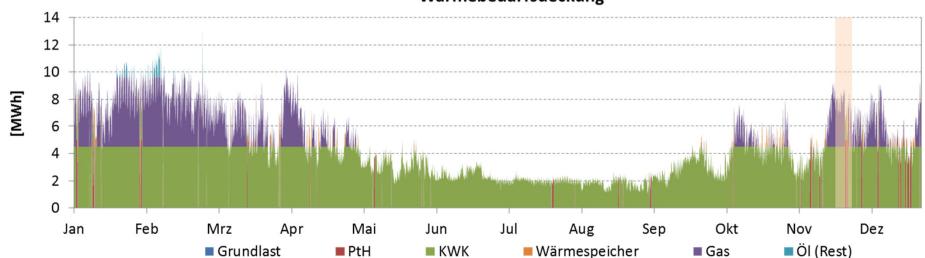
Overview


Focus on large-size PtH applications

Case studies

4 cases on company level (heat pump/boiler/steam)

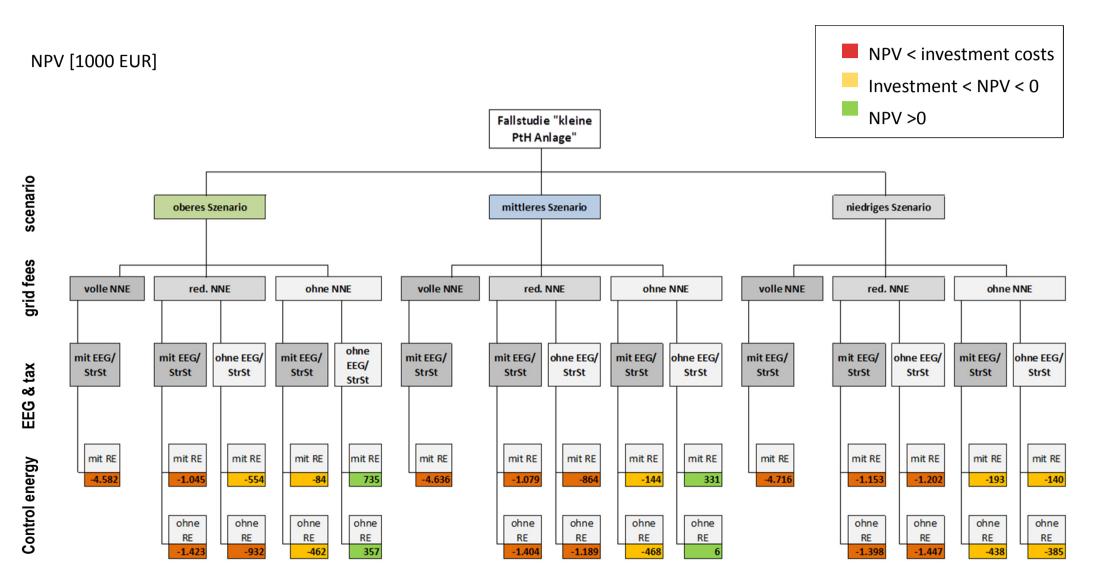
- Framework and methodology :
 - Hourly simulation of PtH applications for a given heat demand curve
 - Scenarios over 20a with various energy scenarios
 - NPV calculations on cash flow basis
 - WACC: 4%
- Sensitivity analysis subject to



Case studies - Example

Case study 2: local heat grid with 40 GWh yearly heat demand

- Typical medium-sized heat grid situation
 - 40 GWh grid feed-in ca. 12 MW thermal peak load
 - Heat Production with 30% CPH and gas-fired boiler
- Implementation of an PtH application with
 - 5 MW el/th. Power, investment ca. 750.000 EUR
 - PtH use in case of low wholesale prices or request for control energy



Wärmebedarfsdeckung

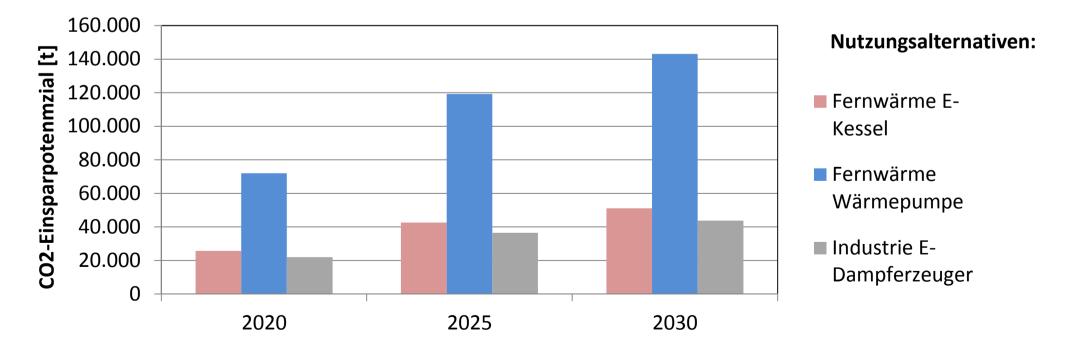
Case studies

Case study 2: sensitivites small scale PtH (5 MW)

Case studies

summary

	Heat sink	Thermal power	Operating times	CO ₂ savings	Profitability
Large scale PtH	Heat grid (500 GWh)	30 MW	100-600 h/a	2-6%	Only, if grid fees and EEG/taxes are not applied
Small scale PtH	Heat grid (40 GWh)	5 MW	120-850 h/a	2-10%	Only, if grid fees and EEG/taxes are not applied
Heat pump	Heat grid (40 GWh)	5 MW	200-6.000 h/a	Bis zu 15%	Only, if grid fees and EEG/taxes are not applied
PtH steam (industrial use)	Industry, steam supply	50 MW	1.000 h/a	Rd. 7%	-


 Current regulatory framework affects profitability to a large extend and prevents breakthrough in all cases

Case study: federal state level of Sachsen-Anhalt

CO₂ Savings by use of excess power in the heat market

- Only additional amounts of renewable power were taken into account
- Maximum savings of 120 000 t/a until 2025 in high scenario but only, if heat pumps are used as PtH devices
 - ... is equivalent to 1,5% of CO2-emissions of households and commercial sector
 - …is equivalent to 0,5% of total CO2-emissions in Sachsen-Anhalt

Federal state level of Sachsen-Anhalt

Valuation and comparison of PtH induced CO₂ savings

- Savings of up to **120 000 t/a**
- To achieve the same effect,
 - 100.000 e-cars must replace gasoline engines => increase by factor of 300 compared to 2017 !
 - or 7 Mio. Lightings devices must be replaced by LED –
 => all households in Sachsen-Anhalt!
 - or 1.5 Mio. People must become vegetarian => every other in Sachsen-Anhalt !

120 000 t savings are of relevance!

Agenda

- Present situation and regulatory framework
- PtH applications case studies
 - Company level conditions for profitable operation
 - State level contribution of sector coupling: case study for the federal state of Sachsen-Anhalt
- conclusions

Recommendations and outlook

- Heat by PtH devices competes with fuels with significantly lower taxes and fees (in Germany by factor of 10) => transition from electricity to heat sector is nearly impossible
- "Energiewende" related taxes and fees prevent a flexible and economical use of large scale PtH – even when it is highly flexible and grid compatible or in case of negative power prices
- Fixed primary energy factors are not helpful dynamic quality indicators are necessary as incentive instrument
- grid fees as well as taxes and EEG must become more dynamic and regional
- a broad electrification of the heat market towards an "all electric society" requires heat pumps instead of E-boilers

sector coupling needs its own market role ...
 ... without creating new misbalances concerning fees and taxes !

Outlook: full picture of demand sectors in Germany Sectoral final energy demand in TWh

Quelle: Zeitreihen zur Entwicklung der Erneuerbaren Energien in Deutschland, BMWI

- Share of REN in power sectors has increased significantly since 2000
- Mobility and heat sector stay way behind

We still stand – after 15 years of EEG –at the beginning of a transformation process!

EEB ENERKO Energiewirtschaftliche Beratung GmbH Dr. Armin Kraft Landstraße 20 52457 Aldenhoven Telefon: +49 (2464) 971-537 www.enerko.de E-Mail: Armin.Kraft@enerko.de

14.03.2018

EEB ENERKO Energiewirtschaftliche Beratung GmbH