

Agenda

- Anforderungen an Wärmenetze der Zukunft
- Flexibilisierung von KWK-Anlagen
 - Überblick Wärmespeicher und Typisierung
 - Einsatzmöglichkeiten und Chancen am Strommarkt
 - Sektorkopplung
 - Fallbeispiel Simulation und Einsatzplanung: Küstenkraftwerk Kiel
- KWK Quo Vadis KWK-G 2017
 - Neue Randbedingungen: Ausschreibungsverfahren
 - Fallbeispiel mit Erneuerer Wärme: Nahwärmekonzept Westerholt

Standorte und Gesellschaften

Aachen • Aldenhoven • Berlin • Düsseldorf

EEB ENERKO Energiewirtschaftliche Beratung GmbH

Aldenhoven bei Aachen / Berlin

Studien und Gutachten, Regulierung, Marktanalysen, Technische Planung sowie Klimaschutz- und Energiekonzepte ESW ENERKO Wirtschaftsberatung GmbH Rechtsanwälte Achterwinter

Düsseldorf

Jahresabschlussprüfung, Steuerberatung und Testierungen sowie Rechtsberatung für Versorgungswirtschaft und Industrie

EES ENERKO Energy Solutions GmbH
 Aachen

Netzmanagement, Bilanzkreisabwicklung, Vertriebscontrolling und Prozessoptimierung ENERKO Informatik GmbH

Aachen

Entwicklung von datenbankorientierten Informationssystemen im Bereich der Energiewirtschaft

EEB ENERKO: Beratungsschwerpunkte

Standorte Aldenhoven bei Aachen und Berlin • 40 Mitarbeiter

Konzepte und Gutachten

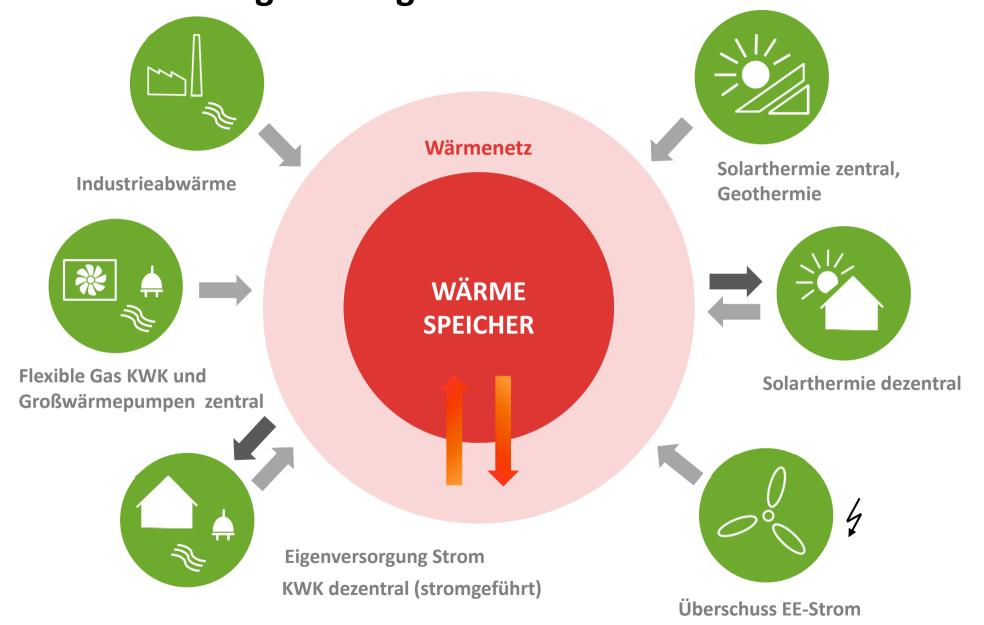
Energiewirtschaftliche Beratung

Technische Planung

- Unternehmensentwicklung
- Klimaschutzkonzepte
- Kraftwerks- und KWK-Analysen
- Fernwärmekonzepte
- Primärenergiefaktoren und Hocheffizienznachweise
- Energiemanagement

- Unternehmensbewertung
- Netzbewertung und -kauf
- Netznutzungsentgelte
- Strom- und Gasbeschaffung
- Emissionshandel
- Betriebswirtschaftliche Begleitung

- Heizkraftwerke und BHKW
- Netze Strom, Gas, Fernwärme
- IndustrielleMedienversorgung
- Speicher f
 ür Fernw
 ärme und Gas
- Regenerative Stromerzeugung


Fernwärme: Entwicklung bis heute

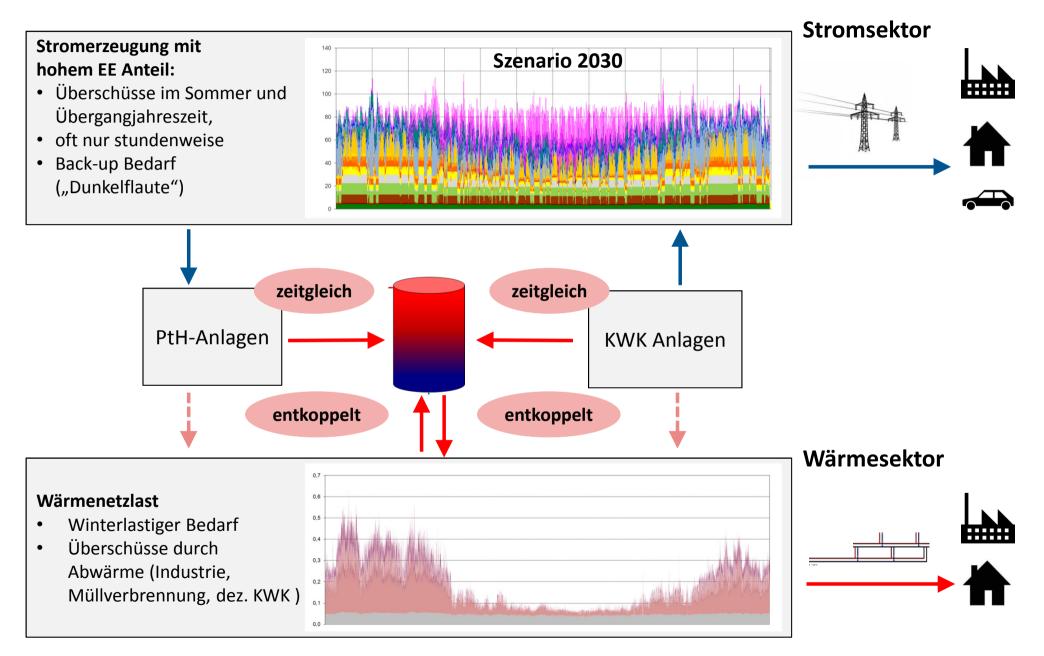
Lokale Fernwärme/Dampf **Fernwärme** Fernwärme/Ferndampf Fern-/Nahwärme Dampfsysteme, Stahlrohre Dampf- und Heisswasser, Vorisolierte Röhren (KMR) flexible Rohrsysteme Hohe Temperaturen, vorgefertigte smart energy, Netz Haubenkanäle, Stahlrohre Kompaktstationen, LowEx & Niedertemperatur Messung und Überwachung Fernwärmerückspeisung **Temperatur Effizienz** Zentrale Wärmepumpen Saisonalspeicherung Solarthermie Geothermale Wärme Windüberschuss, PtH Erzeugung **KWK Biomasse KWK Biomasse** Industrieabwärme Industrieabwärme Wärmespeicher Wärmespeicher KWK Kohle, KWK Öl **KWK Erdgas** Flexible KWK Erdgas Kohle Kohle, Müll Gas, Müll, Öl, Kohle KWK Müllverbrennung 1. Generation / 1880 - 1950 2. Generation / 1950 - 1980 3. Generation / 1980 - 2015 4. Generation / 2015 - ?

Ziel ist eine "smarte" Wärmenetz-Plattform die erneuerbare Energien integriert

Agenda

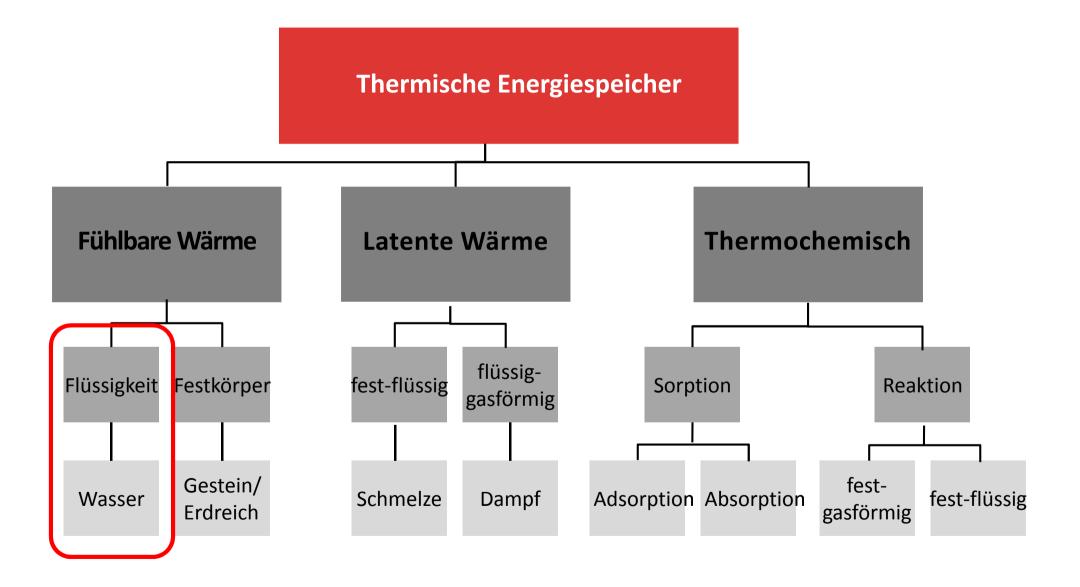
- Anforderungen an Wärmenetze der Zukunft
- Flexibilisierung von KWK-Anlagen
 - Überblick Wärmespeicher und Typisierung
 - Einsatzmöglichkeiten und Chancen am Strommarkt
 - Sektorkopplung
 - Fallbeispiel Simulation und Einsatzplanung: Küstenkraftwerk Kiel
- KWK Quo Vadis KWK-G 2017
 - Neue Randbedingungen: Ausschreibungsverfahren
 - Fallbeispiel mit Erneuerer Wärme: Nahwärmekonzept Westerholt

Flexibilisierung von KWK-Anlagen mit Wärmespeichern



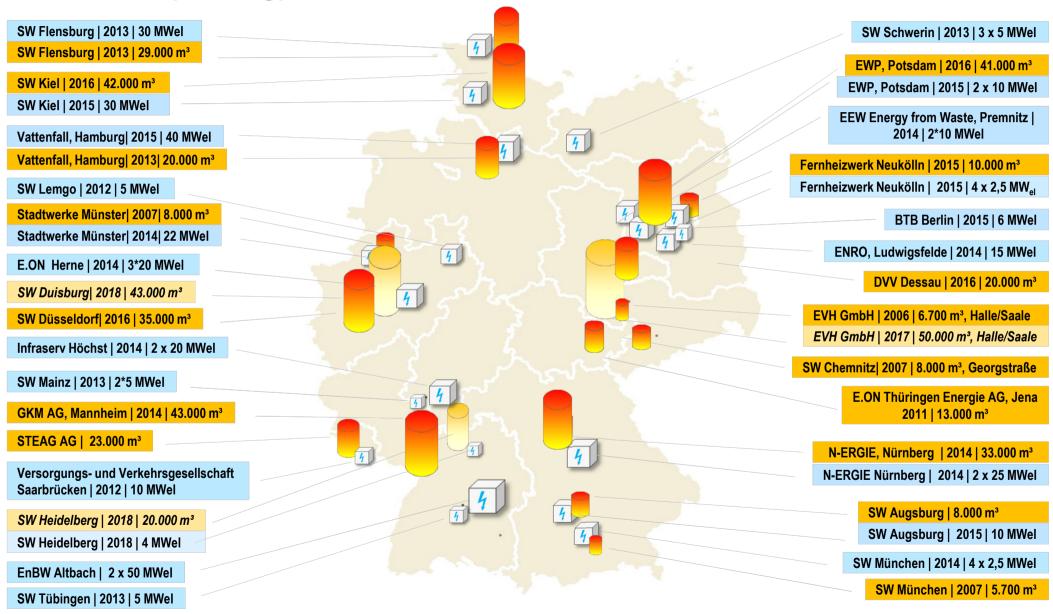
- Ursache für den Leidensdruck: Niedrige und volatile Strompreise
- BHKW-Einsatz in der Grundlast i.d.R. nicht wirtschaftlich => Lösung: große BHKW-Anlagen, die nur in "guten" Stunden laufen

Spotmarktpreise Stundenprodukte in EUR/MWh, 2015 22 20 18 60-70 **50-60** 16 40-50 14 30-40 13 **20-30** 10 **10-20** 0-10 -10-0 -20--10 31.1 2.3 1.5 31.5 30.6 29.8 28.9 27.11 27.12 1.1 1.4 30.7 28.10


Sektorkopplung mit KWK, PtH und Wärmespeicher

Übersicht Wärmespeicher

Übersicht Heißwasserspeicher



	Drucklose (atmosphärische) Speicher			Druckspeicher
	Erdbeckenspeicher (Saisonalspeicher)	1 Zonen speicher	2 Zonen Speicher	
Prinzip		98°C	115°C	
Volumen (realisiert)	Bis zu 200.000 m³ (Vojens, DK)	Bis zu 50.000 m³ (Gedersdorf, AUT Halle)	42.000 m³ (Kiel, Nürnberg)	Modular, Einzelbehälter bis zu 2000 m³ (Münster, Leipzig)
Max. Temperatur	95°C (hauptsächlich Solarthermie)	98°C	> 100°C (realisiert 120°C)	Bis ca. 140 °C
Spez. Kapazität (bei 60° RLT)	40 kWh/m³	44 kWh/m³	Bis 64 kWh/m³	Bis ca. 90 kWh/m³
Kosten (ca.)	100-250 EUR/m³	300-500 EUR/m³	400-700 EUR/m³	800-1.200 EUR/m³

Wärmespeicher- und PtH-Projekte in Deutschland

Überblick (Auszug)

Simulationsbeispiel

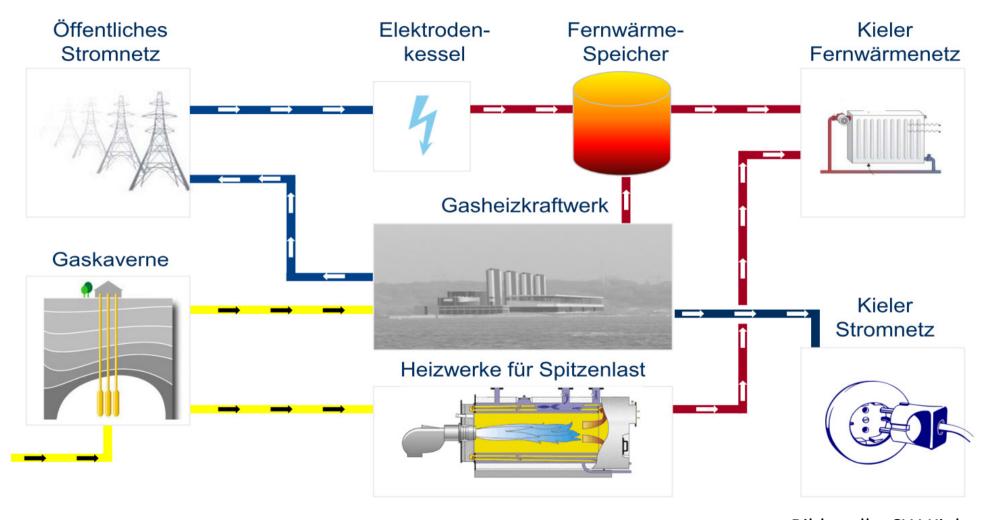
Praxisbeispiel*: Wärmespeicher und KWK-Erzeugung in Kiel

- Ausgangssituation:
 - Die Stadtwerke Kiel betreiben zusammen mit E.ON ein kohlegefeuertes Heizkraftwerk
 (320 MW) in Kraft-Wärme-Kopplung (KWK) an der Kieler Förder
 - inzwischen werden 1/3 aller Gebäude in Kiel mit Fernwärme beheizt und die Stadtwerke Kiel wollen diesen Anteil weiter steigern.
 - Das GKK ist das "Arbeitspferd" der Fernwärme-Versorgung Kiel
 - Das Heizkraftwerk wurde in 1970 errichtet, nach 45 Jahren Betrieb ist bald das Ende Lebensdauer erreicht
 - Verfügbarkeit und Wirtschaftlichkeit haben sich in den letzten Jahren deutlich verschlechtert

18.05.2017

^{*)} mit freundlicher Genehmigung der Stadtwerke Kiel

Historie des Projektes



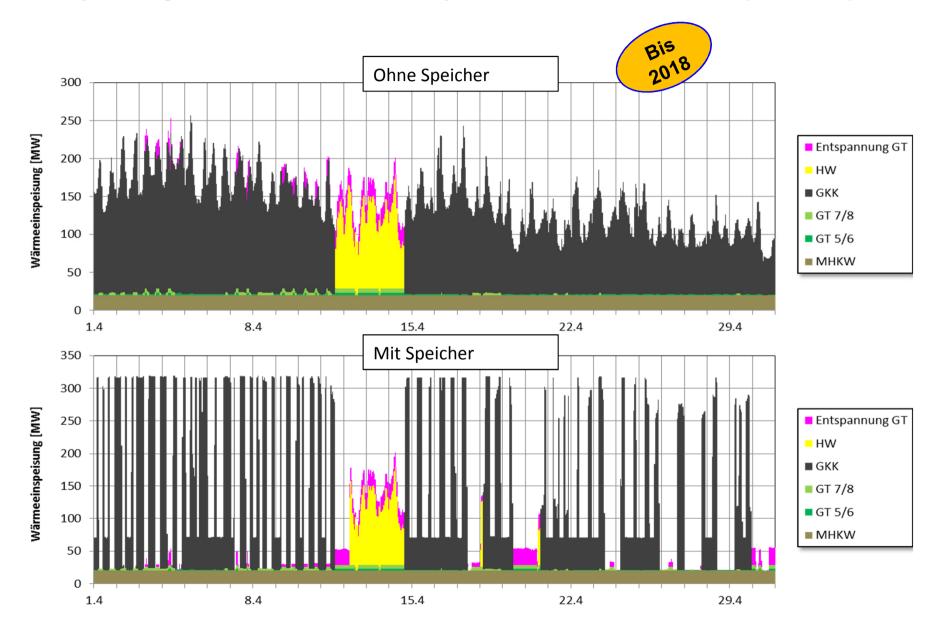
2000-2006:	Beginn der Voruntersuchungen GKK Nachfolge (Kohlebasis)
2007	Plan A: Start der Planung mit Fokus Großes Steinkohlekraftwerk (800-1100 MW)
2008	Bewertung Kohleblock (groß/klein) und gasbasierte Alternativen
2008/2009	Widerstand gegen Steinkohle, Bürgerproteste, verschlechterte Wirtschaftlichkeit => Projektstopp Kohleblock
2009	Plan B: Untersuchung GuD (400 MW –Klasse)
2010	Plan C: Fernwärmeschiene nach Neumünster und (Mit-)Nutzung der dort vorhandenen Kapazitäten
2011	Plan D: Untersuchung an Wärmebedarf angepasster Gas KWK (Motoren / Turbinen, max 200 MW) mit Wärmespeicher
2013	Grundsätzlicher Beschluss zur Umsetzung des Motoren-Konzeptes, Beginn der vorbereitenden Arbeiten (Grundstück, Baufeldfreimachung, Gasanbindung)
2014	Bauentscheidung 30.000 m³ Speicher und Elektrokessel, Bauentscheidung Großmotoren-KW ist noch offen
2015	Beginn Wärmespeicherbau
2016	Freigabe Kraftwerksbau, IBN Elektrokessel
2017 (Mai)	IBN Wärmespeicher, Fundament Kraftwerk im Bau

Küstenkraftwerk Kiel: Konzept des GHKW

Kombination aus Gasspeicher, Wärmespeicher, Flexibler KWK-Anlage und Elektrokessel

Bildquelle: SW Kiel

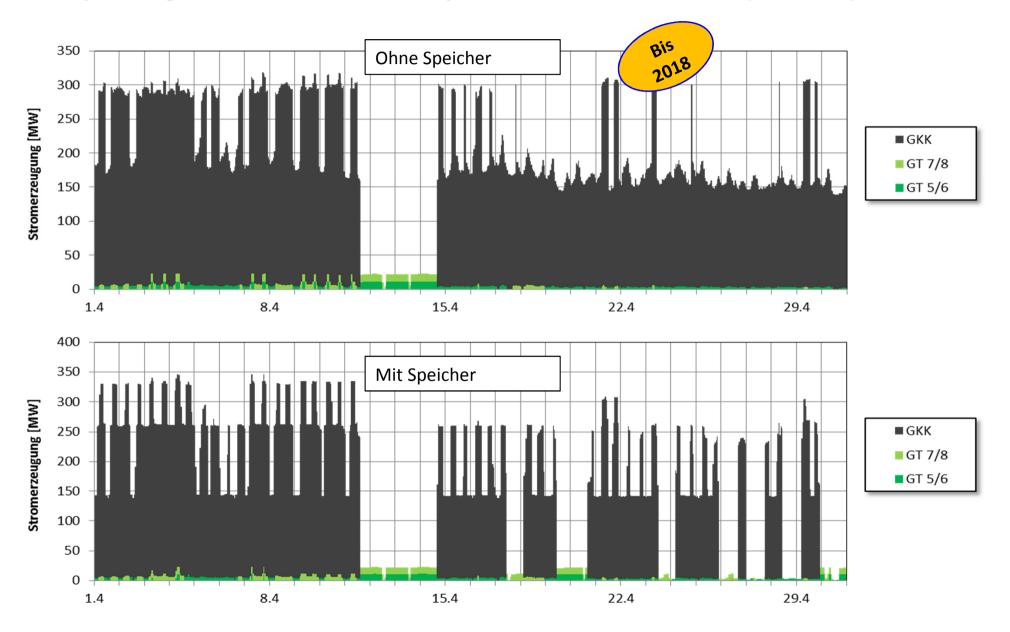
Küstenkraftwerk Kiel: Flexibilisierung


Grundprinzip Wärmespeichereinsatz und Elektrokessel

		Stromgeführter Einsatz	Wärmegeführter Einsatz
Bis 2018	Betrieb mit Kohlekraftwerk GKK (alt, bis 2018) => Variables Strom/Wärtmeverhältnis Prinzip der Entnahmekondensation	 Verringerung der Wärmeauskopplung und Erhöhung der Stromproduktion in Zeiten hoher Strompreise => Entladung Speicherladung in Zeiten mittlerer Strompreise Vermeidung von Minlastbetrieb (z.B. Nachtabschaltung) Neg. Regelleistung durch E-Kessel/Speicher-Kombination 	 Dämpfung thermischer Lastspitzen im Netz Durch Zwei- Zonen Speicherkonzept auch bei Netztemperaturen >100 °C einsetzbar ohne Nachheizung Zusätzliche schnelle Reserveleistung in Verbindung mit E-Kessel,
Ab 2019	Betrieb mit modularem Motoren-Kraftwerk (neu, geplant ab 2019) => Festes Strom/Wärmeverhältnis, Prinzip der Gegendruck- Turbine	 Erhöhung der Wärmeauskopplung und Erhöhung der Stromproduktion in Zeiten hoher Strompreise Ladung Abschaltung in Zeiten negativer spreads => Entladung Neg. Regelleistung durch E-Kessel/Speicher-Kombination 	 Dämpfung thermischer Lastspitzen im Netz Durch Zwei- Zonen Speicherkonzept auch bei Netztemperaturen >100 °C einsetzbar Zusätzliche schnelle Reserveleistung in Verbindung mit E-Kessel,

Beispiel Simulationsrechnung

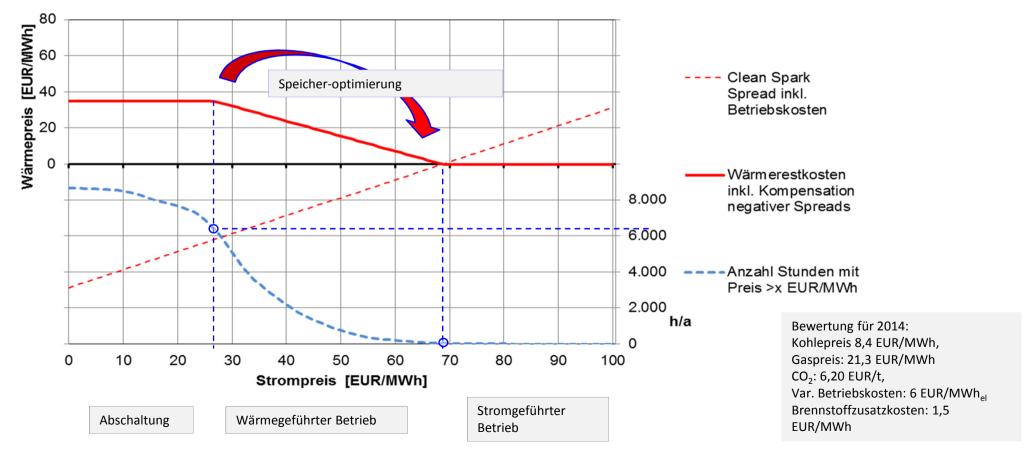
Einsatzplanung Wärme Beim Betrieb Speicher + Kohlekraftwerk (bis 2018)



18.05.2017

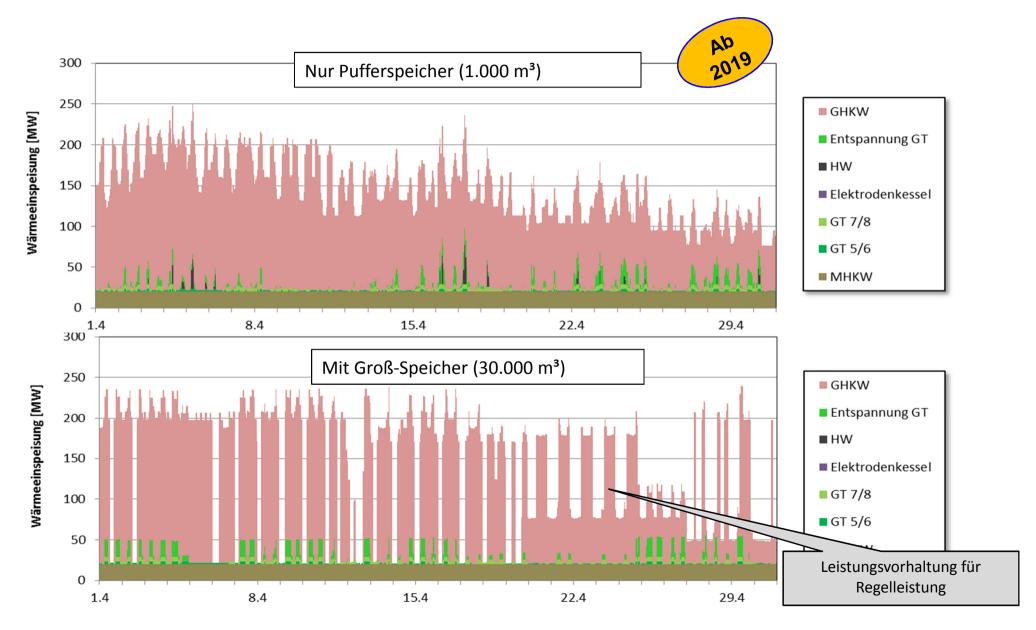
Beispiel Simulationsrechnung

Einsatzplanung Wärme Beim Betrieb Speicher + Kohlekraftwerk (bis 2018)

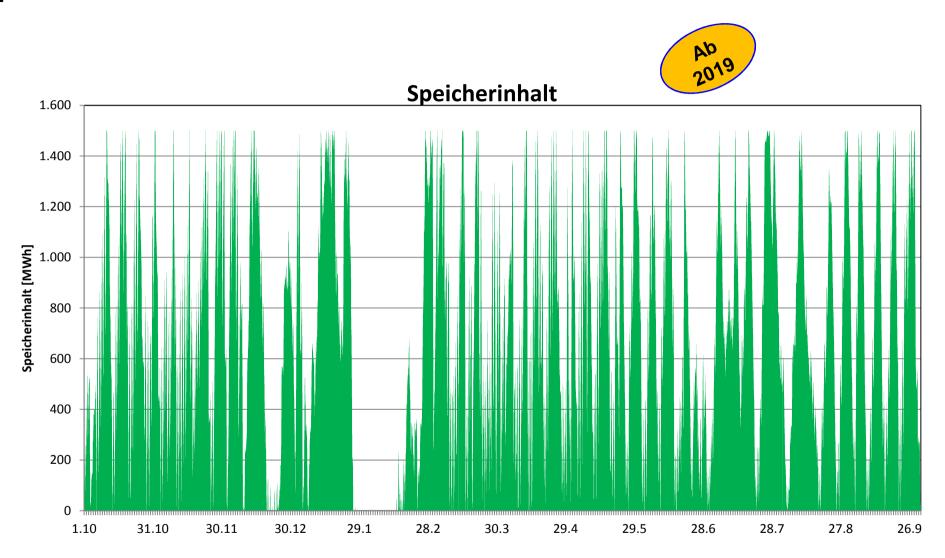


Küstenkraftwerk Kiel

Grundprinzip der Stromoptimierung bei Großmotoren-KW

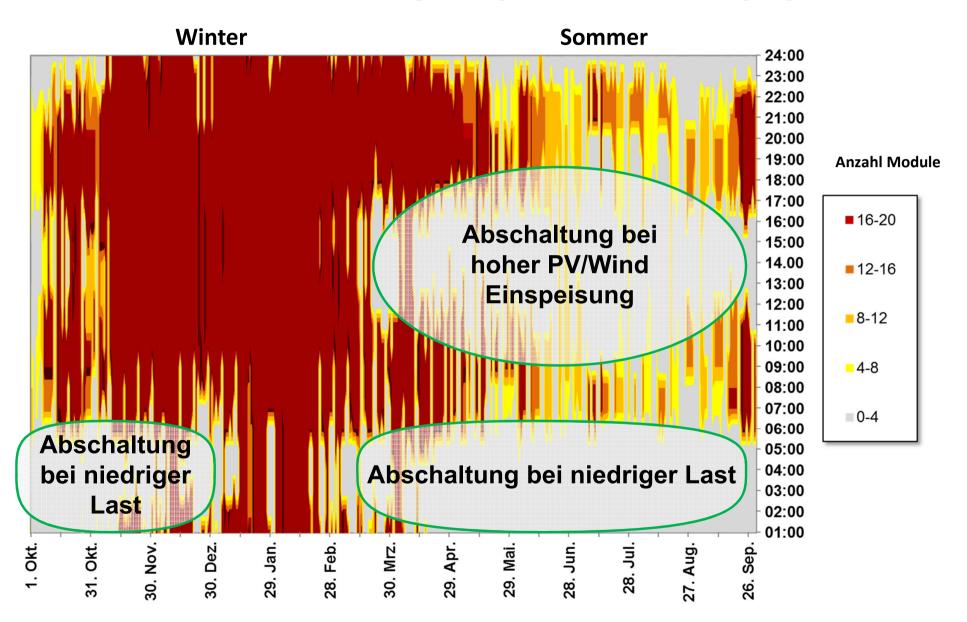

- Die Bewertung baut auf einem integierten Kalkulationsmodell der EEB Enerko auf, das auch bereits in vorangegangenen Studien für die Stadtwerke Kiel eingesetzt wurden.
- Optimiert werden alle Einsatzparameter bzw. Aktivitäten in den vorgegebenen Einsatzgrenzen unter Maßgabe der Kostenminimierung des Gesamtsystems auf Stundenebene.
- Das hier gezeigte Energieszenario basiert auf Beispielhaften Energiepreisen

Beispiel Simulationsrechnung Kiel


Wärmeerzeugung mit und ohne Speicher – Parallelbetrieb mit flexiblem Gaskraftwerk

Beispiel Simulationsrechnung Kiel

Speicherladezustand – Parallelbetrieb mit flexiblem Gaskraftwerk



Der Speicher wird ganzjährig eingesetzt ausser bei Maximallast: rd. 100 Ladezyklen

Beispiel Simulationsrechnung Kiel

Kraftwerkseinsatz GHKW: eine ideale Ergänzung erneuerbarer Erzeugung!

Küstenkraftwerk Kiel

Baufortschritt

Winter 2015/16

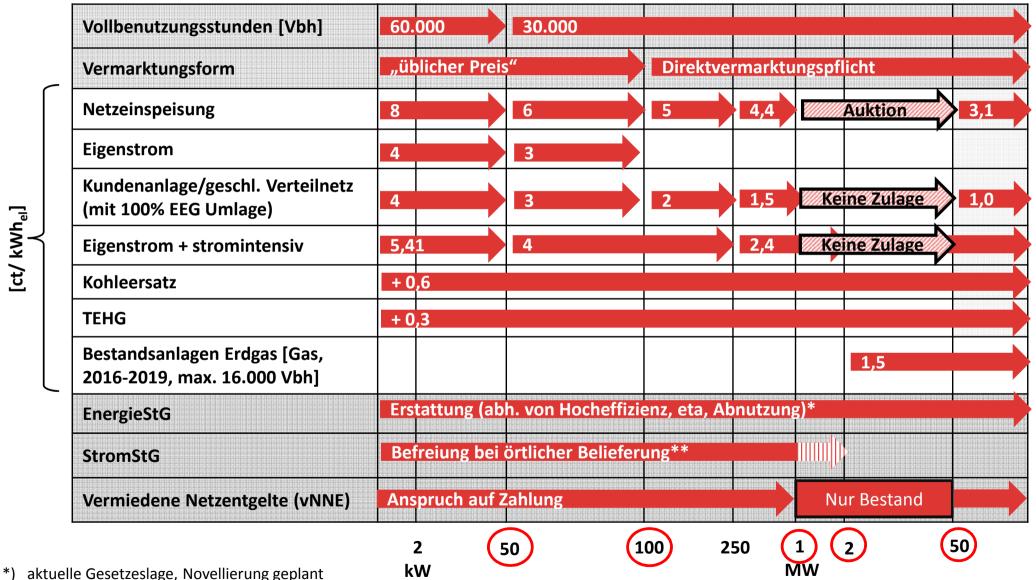
Frühjahr 2016

Herbst 2016

Visualisierung Kraftwerk + Speicher

Bilder: SW Kiel

Agenda



- Anforderungen an Wärmenetze der Zukunft
- Flexibilisierung von KWK-Anlagen
 - Überblick Wärmespeicher und Typisierung
 - Einsatzmöglichkeiten und Chancen am Strommarkt
 - Sektorkopplung
 - Fallbeispiel Simulation und Einsatzplanung: Küstenkraftwerk Kiel
- KWK Quo Vadis KWK-G 2017
 - Neue Randbedingungen: Ausschreibungsverfahren
 - Fallbeispiel mit Erneuerer Wärme: Nahwärmekonzept Westerholt

KWK ab 2017

Die KWK-Welt wird noch komplexer.....

^{**)} ggf. gewährte Stromsteuerbefreiung wird bei >1 MW bei Auktionspreis in Abzug gebracht

KWK ab 2017- Ausschreibungssegment

Gibt es für Anlagen 1 - 50 MW weitere abweichende Bedingungen?

- Anlagen, die sich in Ausschreibungen durchgesetzt haben, sind anders als andere KWK-Anlagen in der Einspeisung nicht mit Erneuerbare-Energien-Anlagen (EE-Anlagen) gleichgestellt (§3 Absatz 2).
 - → Im Fall von Netzengpässen: Anlagen werden vorher abgeregelt.
 - → Nach Ende der Förderdauer: kann Strom aus den Anlagen auch selbst verbraucht werden. (aber volle EEG-Umlagepflicht statt 40 % bei anderen neuen KWK-Anlagen)
- Eine modernisierte Anlage darf sich nur an den Ausschreibungen im Segment 1 50 MW beteiligen, wenn die Kosten der Modernisierung mindestens 50 % einer Neuanlage betragen (§ 5 Absatz 1 Nummer).
 - → Anlagen, die keine 50 % erreichen, erhalten künftig keine Förderung mehr.
- Nachgerüstete Anlagen dürfen sich nicht an den Ausschreibungen im Segment
 1 50 MW beteiligen. Sie erhalten die mit dem KWKG 2016 festgelegten Vergütungssätze.
- Geplantes Volumen: halbjährlich 100 MW, davon ansteigender Anteil innovativ

KWK ab 2017

Zwischenfazit ...

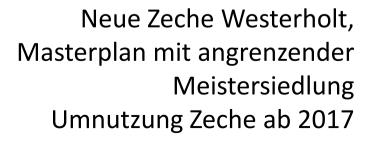
- 1. Mit Novellierung von EEG und KWK sind jetzt immerhin zwei relevante Gesetzte fast zeitgleich "festgezurrt"! (mal sehen, wie lange)
- 2. Zentrale Änderung gegenüber 2016: Ausschreibung statt Förderung für 1 50 MW
- 3. Nach wie vor spannend und immer individueller: Auslegung anhand von Wärme-Strombedarf und Förderschwellen... (anrechenbare Vollbenutzungsstunden etc...)
- 4. Übergangsregelung und Bestandsschutz bei Modernisierung beachten insbesondere bei Eigenstromprivilegien!
- 5. Nach wie vor **noch nicht ganz klar** für die dezentrale Stromproduktion aus EE und KWK:
 - Zukunft der vermiedenen Netzentgelte (vNNE) > NeMoG
 - Zukunft der Energie- und Stromsteuererstattung > Energie- & StromStG
- 6. Ausschreibungsverordnung in Abstimmung (Referentenentwurf Ende April 2017)
- 7. Noch offen: Randbedingungen und Marktrolle für Sektorkoppler/PtH Komponenten

Sachstand KWKG 2017 und EnergieStG

KWKG Ausschreibungen: Mögliche Strategien

- 1. Vorzugsstrategie: BImSchG-Genehmigung noch innerhalb der Übergangsfrist (Ende 2016,) erreichen und feste Zuschusshöhe "sichern"
 - Zeitfenster ist geschlossen, einige Projekte in Umsetzung
- 2. Vermeidungsstrategie: Anlagen unter 1 MW oder über 50 MW bauen
 - Problematisch gerade in mittelgroßen Fernwärmenetzen (30 GWh 300 GWh)
- 3. Innovationsstrategie: KWK-Anlagen mit "innovativen" Komponenten (Solarthermie, Wärmepumpen, PtH) ergänzen und auf Innovationsbonus setzen
 - Ausgestaltung noch offen, höhere Investitionen nötig
- 4. Vorwärtsstrategie: Bewusst in eine der ersten Auktionsrunden gehen um "first Mover"-Vorteile und ggf. sogar höhere Zuschläge zu erhalten
 - Riskant, solange Ausschreibungsvolumen und Anbieterfeld unklar sind
- 5. Rückzugsstrategie: Reduktion KWK-Erzeugung und Ausweichen auf Alternativen (PtH, Abwärme, Solarthermie, Biomasse, Heizwerke,)
 - Dargebotsabhängig, führt i.d.R. zu Verteuerung der Erzeugung

Ausblick: Dekarbonisierung der Wärmeversorgung


Projektbeispiel Energiekonzept Zeche Westerholt in Gelsenkirchen/Herten

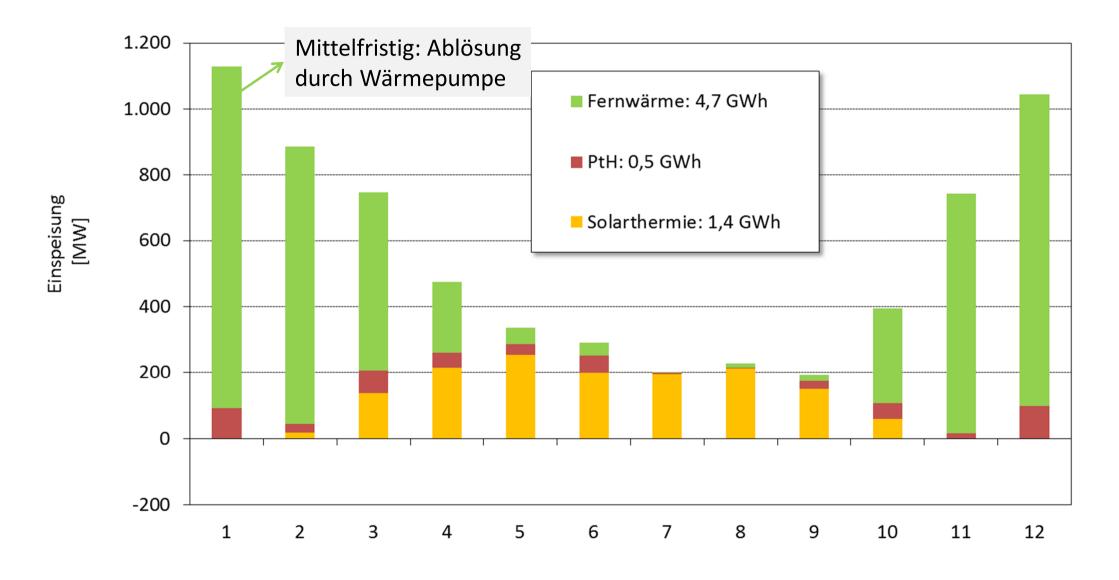
"Altes" Zechengelände, Stilllegung Ende 2008

Bildquelle: Stadt Gelsenkirchen/Stadt Herten, eigene Darstellung

Dekarbonisierung der Wärmeversorgung

Zeche Westerholt in Gelsenkirchen/Herten – Ansichten

Bausteine des Konzeptes



 Erstellung und Umsetzung Energiekonzept durch BMU als "Nationales Projekt des Städtebaus" gefördert

Projektbeispiel

Nahwärme Zeche Westerholt, Energiebilanz (Simulation für Endausbau)

Fazit

Ergebnisse Energiekonzept neue Zeche Westerholt

- Projektsicht des Gesamtprojektes ergibt
 - Spezifische Erschließungskosten Gesamtprojekt mit 350 EUR/MWh sind im üblichen Bereich => Nahwärme an sich ist eine sinnvolle Option
 - Erzeugungskosten basieren auf einer Mischkalkulation aus Fernwärme/Grubengaswärme, Solarwärme (20-25%) und PTH (5-10%)
 - Kalkulierte Wärmepreise (Endkunden) sind mit rd. 85 EUR/MWh wettbewerbsfähig und langfristig robust (hoher Fixkostenanteil in Preisgleitklauseln)
 - Niedrige Primärenergiefaktoren von <0,4 und CO₂Faktor <85 g/kWh
 - Projektkalkulation zeigt, dass eine wirtschaftliche Umsetzung möglich ist unter Berücksichtigung der Fördermöglichkeiten (KfW Solarförderung, Anschubfinanzierung aus der BMU-Projektförderung) => Amortisation <20 Jahre
- Die weitere Umsetzung soll in 3 Phasen entsprechend der Flächenentwicklung ab 2017 bis 2024 erfolgen

EEB ENERKO Energiewirtschaftliche Beratung GmbH

Dr. Armin Kraft

Landstraße 20

52457 Aldenhoven

Telefon: +49 (2464) 971-537

www.enerko.de

E-Mail: Armin.Kraft@enerko.de

18.05.2017

