

EEB ENERKO: Beratungsschwerpunkte

Standorte Aldenhoven bei Aachen und Berlin • 40 Mitarbeiter

Konzepte und Gutachten

Energiewirtschaftliche Beratung

Technische Planung

- Unternehmensentwicklung
- Klimaschutzkonzepte
- Kraftwerks- und KWK-Analysen
- Fernwärmekonzepte
- Primärenergiefaktoren und Hocheffizienznachweise
- Energiemanagement

- Unternehmensbewertung
- Netzbewertung und -kauf
- Netznutzungsentgelte
- Strom- und Gasbeschaffung
- Emissionshandel
- Betriebswirtschaftliche Begleitung

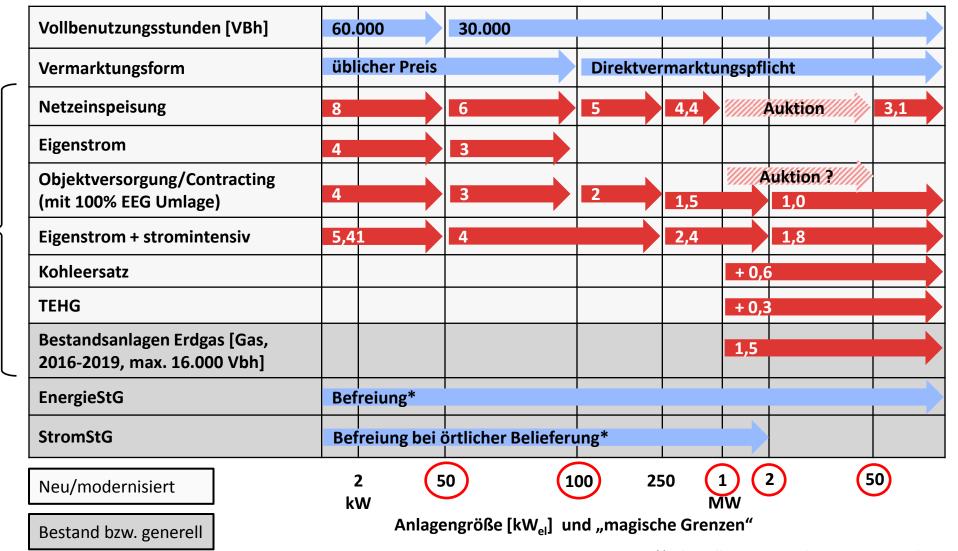
- Heizkraftwerke und BHKW
- Netze Strom, Gas, Fernwärme
- IndustrielleMedienversorgung
- Speicher für Fernwärme und Gas
- Regenerative Stromerzeugung

Agenda

- Ausgangslage
 - Neue Spielregeln für KWK ab 2017
 - Energiemarkt Ende 2016

- Sektorkopplung vorwärts (Wärme => Strom): KWK und Wärmespeicher
 - Überblick Wärmespeicher und Typisierung
 - Einsatzmöglichkeiten und Chancen am Strommarkt
- Sektorkopplung rückwärts (Strom => Wärme): Überschussstrom und Power-to-Heat
 - Power-to-Heat: Neue Perspektiven für den Wärmemarkt
 - Potenzial Windwärme und Nutzungskonkurrenz
 - Mythos "Überschussstrom" Was ist das und wieviel gibt es davon überhaupt?

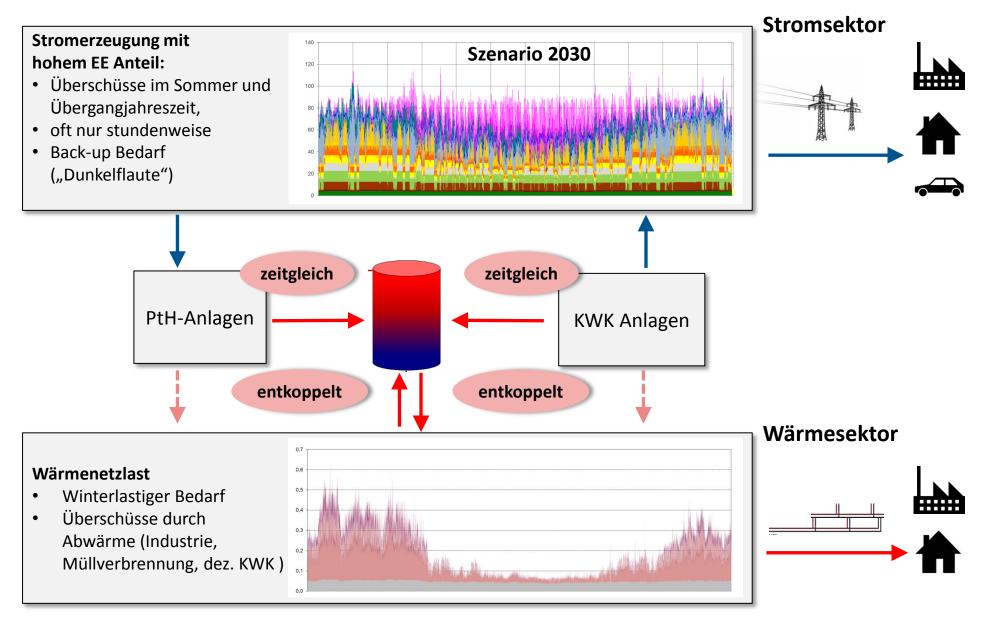
Stand der KWK November 2017



- In den letzten 3 Jahren zeigten sich zwei gegenläufige Tendenzen:
 - KWK-Anlagen zur Eigenstromnutzung sind wegen der Vermeidung stetig steigender Abgaben und Umlagen in vielen Fällen wirtschaftlicher geworden. EEG 2014 und KWK 2016 haben den Vorteil für Neuanlagen wieder reduziert.
 - KWK-Anlagen ohne Eigenstromnutzung (Kraftwerke mit Wärmeauskopplung, Heizkraftwerke, Contracting-Anlagen, Wohnungswirtschaft) sind in gleichem Zeitraum zunehmend unwirtschaftlich geworden
- Eckpunkte des ergänzten KWK-G 2017 nach Anpassungen gem. Wettbewerbskommission:
 - Das KWK Ziel von 25% ist relativiert worden und bezieht sich nun auf eine Steigerung der KWK Strommenge Auf 120 TWh
 - Die Fördersätze für Neuanlagen sind bei Einspeisung erhöht und bei Eigennutzung reduziert worden
 - Zuschüsse für KWK Anlagen zwischen 1 und 50 MW werden ab 2017 ausgeschrieben
 - Netz- und Speicherförderung bleibt erhalten bzw. wird leicht modifiziert (Verdopplung der maximalen Projektsumme, Nachweis der Notwendigkeit einer Bezuschussung)

Sachstand KWKG 2017

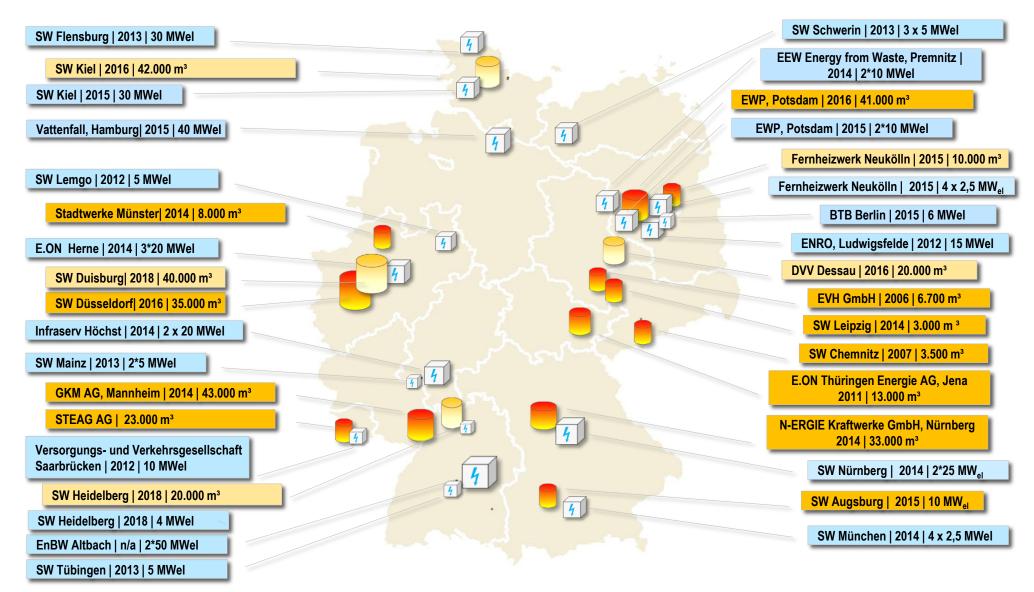
Die KWK-Welt wird noch komplexer.....



*) aktuelle Gesetzeslage, z.Z. in Diskussion

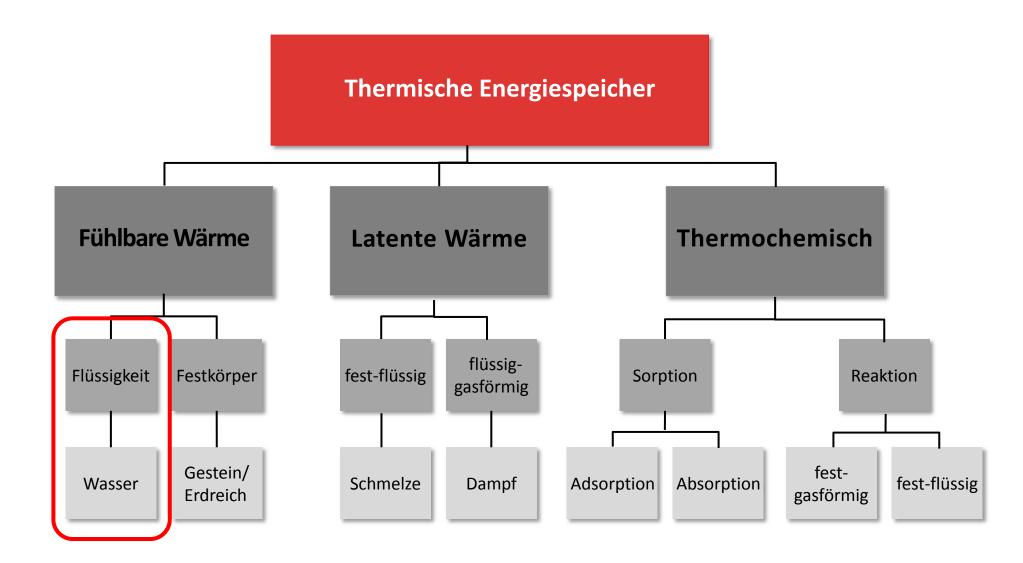
[ct/kWh_{el}]

Sektorkopplung mit KWK, PtH und Wärmespeicher



Wärmespeicher- und PtH-Projekte in Deutschland

Überblick (Auszug)


Agenda

- Ausgangslage
 - Neue Spielregeln für KWK ab 2017
 - Energiemarkt Ende 2016
- Sektorkopplung vorwärts (Wärme => Strom): KWK und Wärmespeicher
 - Überblick Wärmespeicher und Typisierung
 - Einsatzmöglichkeiten und Chancen am Strommarkt
- Sektorkopplung rückwärts (Strom => Wärme): Überschussstrom und Power-to-Heat
 - Power-to-Heat: Neue Perspektiven für den Wärmemarkt
 - Potenzial Windwärme und Nutzungskonkurrenz
 - Mythos "Überschussstrom" Was ist das und wieviel gibt es davon überhaupt?

Übersicht Wärmespeicher

Wärmespeicher in der KWK

Motivation

- Kraftwerke mit KWK müssen bei hohem Wärmebedarf betrieben werden, auch wenn es energiewirtschaftlich nicht sinnvoll ist
- Wärmespeicher entkoppeln Strom- und Wärmeerzeugung in KWK-Anlagen und ermöglichen eine optimale ökonomische Fahrweise.
 - Max. Stromerzeugung bei hohen Preisen bei gleichzeitiger Senkung der Wärmeerzeugung durch Speicherung
 - Wärmeversorgung aus dem Speicher und Abschaltung der KWK-Anlage bei geringen Strompreisen
 - Trotz stromorientierter Fahrweise hoher KWK-Anteil der Stromerzeugung dank Speicher
- Möglichkeit der elektrischen Beheizung (Power-to-Heat) als Regelleistung oder bei zu hoher Stromproduktion im Netz

Übersicht Heißwasserspeicher

	D	rucklose Speicher		Druckspeicher
	Erdbeckenspeicher (Saisonalspeicher)	atmosphärischer Speicher	Atmosphärischer Zweizonenspeicher	
Prinzip	98°C	98°C	115°C	
Volumen (aktuell realisiert)	Bis 200.000 m ³	Bis rd. 50.000 m ³	Bis rd. 42.000 m ³	Modular, Einzelbehälter bis 150 m³
Max. Temperatur	90°C (bei Solarwärme- speicherung)	98°C	abhängig von der Wasserauflastung	Bis ca. 140 °C
Spez. Kapazität (bei 60° Rücklauftemperatur)	35 kWh/m³	44 kWh/m³	> 44 kWh/m³	Bis ca. 90 kWh/m³
Kosten (ca.)	100-250 EUR/m³	300-500 EUR/m³	400-700 EUR/m³	800-1.200 EUR/m³

Beispiel Erdbeckenspeicher in Dänemark

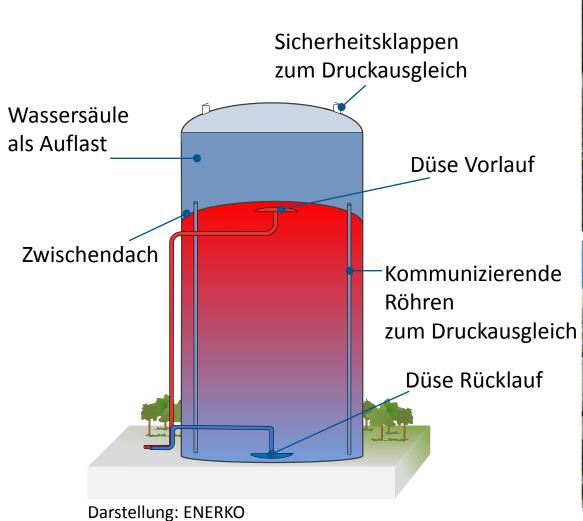
Im Bau: Toftlund, 80.000 m³

In Betrieb: Gram, 120.000 m³

Quelle: ENERKO / Arcon Sunmark 2016

Beispiel atmosphärische Speicher Planungsbeispiele der EEB ENERKO

Wärmespeicher Mannheim (45.000 m³)


Wärmespeicher Halle (7.000 m³)

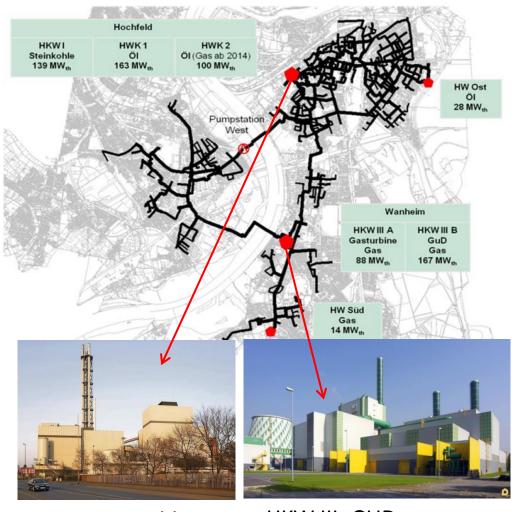
Beispiel Zweizonenspeicher Kiel (30.000 m³)

Vorplanung und Wirtschaftlichkeitsanalyse durch EEB ENERKO

Patent: Bilfinger VAM

Beispiel Wärmespeicher Duisburg

Komplexität der hydraulischen Einbindung

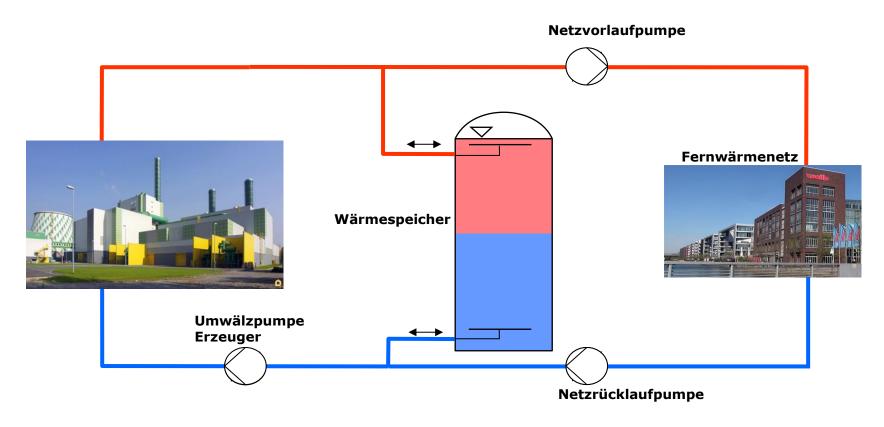

HKW I abgängig in 2017

- Versorgung zukünftig mit GuD aus HKW III
- Ergänzung eines Wärmespeichers für den wirtschaftlichen Betrieb der GuD

Komplexe Vernetzung der Fernwärme

- Zahlreiche Erzeuger im Netz
- Hydraulische "bottlenecks"
- Hydraulische Maschen im Netz

→ Versorgungssicherheit des Netzes muss in jeder Erzeugersituation gewährleistet werden

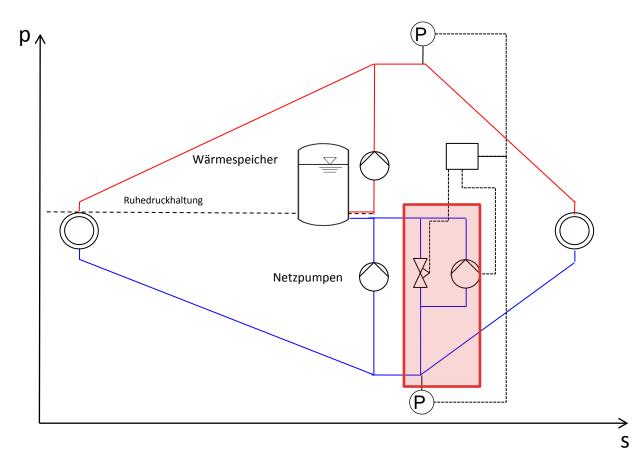

HKW I -Kohle

HKW III -GUD

Hydraulik Wärmespeicher

Zusätzliche Funktionen

- Hydraulische Weiche für Erzeuger
- → Speicher wird zwischen Netzpumpen eingebunden
- → Erzeuger in einem Erzeugerkreis mit Umwälzpumpe



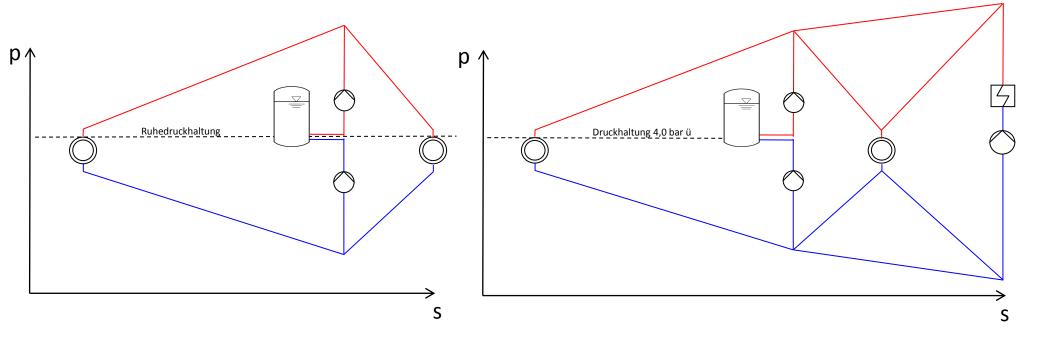
Hydraulik Wärmespeicher

Zusätzliche Funktionen

- Ruhedruckhaltung des FW-Netzes durch statischen Druck des Wärmespeichers
- → Speicherhöhe wird entsprechend dimensioniert
- Dynamische Mitteldruckhaltung
- → Druckhalteanlage am Speicher

Beispiel: Rücklaufdruckhaltung

Hydraulik Wärmespeicher


Beispiel: Betrieb direkt eingebundener Speicher im FW-Netz

Speicherpumpen als Netzpumpen

→ Netzdruckregelung der Speicherpumpen

Speicherbetrieb mit anderen Erzeugern

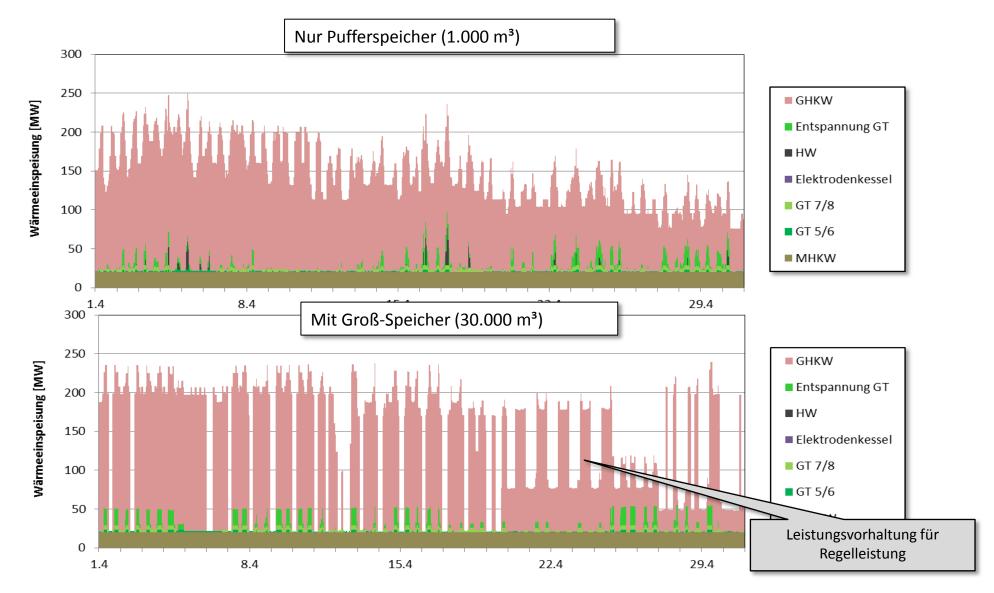
- → Netzdruckregelung der Erzeugerpumpen
- → Massenstromregelung der Speicherpumpen und damit hydraulisch "unsichtbar"

Flexibilisierung KWK-Kraftwerke durch Speicher und E-Kessel

- Durch niedrige Spreads sind die meisten Kraftwerke nicht mehr dauerhaft "im Geld"
- KWK-Anlagen ohne Wärmespeicher <u>müssen</u> Stunden mit geringen Strompreisen "überfahren" oder Heizwerke einsetzen
- KWK-Anlagen mit Wärmespeicher suchen sich die besten Stunden je Tag zur Wärmeproduktion aus (Cherry picking)
- Flexible KWK-Anlagen mit Wärmespeicher produzieren feste Fahrpläne und haben Möglichkeiten der Intraday Optimierung
- Wärme lässt sich (über einen Tag) quasi verlustfrei speichern
- Wärmespeicher sind günstig im Vergleich zu Stromspeichern
 - Investition (Förderung durch KWK-G) / Betriebskosten / Umwandlungsverluste
- Speicher und E-Kessel ergänzen sich gut

Flexibilisierung von KWK-Anlagen mit Wärmespeichern

30.11.2016

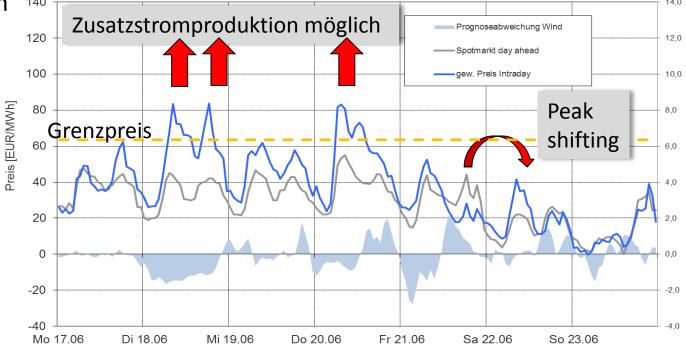


- Ursache für den Leidensdruck: Niedrige und volatile Strompreise
- BHKW-Einsatz in der Grundlast i.d.R. nicht wirtschaftlich => Lösung: große BHKW-Anlagen, die nur in "guten" Stunden laufen

Spotmarktpreise Stundenprodukte in EUR/MWh, 2015 20 18 60-70 **50-60** 16 40-50 30-40 20-30 10 10-20 0-10 -10-0 -20--10 30.6 31.1 2.3 1.5 31.5 30.7 29.8 28.9 28.10 27.11 27.12 1.4

Wärmeerzeugung mit und ohne Speicher Beispielhafte Einsatzplanung flexibles Gaskraftwerk

Ausblick



Zusatznutzen Wärmespeichersysteme in der Intraday-Vermarktung

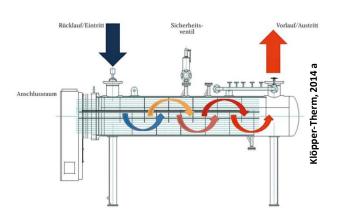
- Speicher sind ein wichtiges Instrument in der Intraday-Vermarktung und ermöglichen Realoptionserlöse
- In Verbindung mit flexiblen Erzeugern (Motoren- oder GT-Kraftwerken, Elektrokessel) erweiterte Regelenergie-Flexibilität

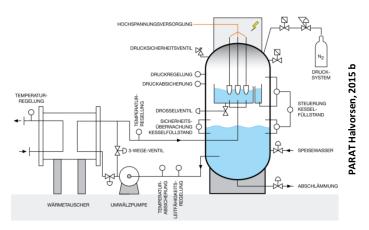
Minimierung von Fahrplanabweichungen (Wärme, Gas und Strom) durch Ausregeln von

Prognoseabweichungen

Beispiel: Nachvermarktung im Intraday handel

Agenda


- Ausgangslage
 - Neue Spielregeln für KWK ab 2017
 - Energiemarkt Ende 2016
- Sektorkopplung vorwärts (Wärme => Strom): KWK und Wärmespeicher
 - Überblick Wärmespeicher und Typisierung
 - Einsatzmöglichkeiten und Chancen am Strommarkt
- Sektorkopplung rückwärts (Strom => Wärme): Überschussstrom und Power-to-Heat
 - Power-to-Heat: Neue Perspektiven für den Wärmemarkt
 - Potenzial Windwärme und Nutzungskonkurrenz
 - Mythos "Überschussstrom" Was ist das und wieviel gibt es davon überhaupt?

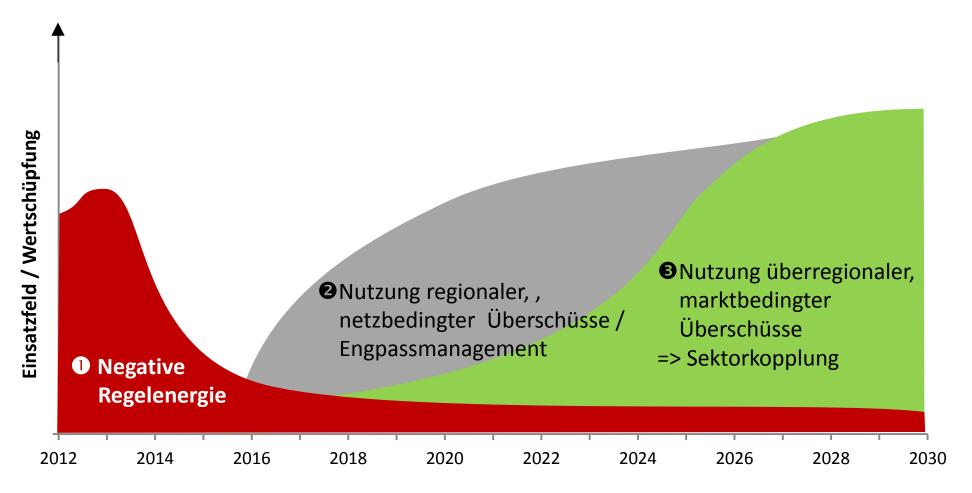

Power to Heat- Technische Lösungen

Direktelektrische Wärmeerzeuger <-> diverse Wärmepumpenarten

- Dezentrale Systeme (HH-Bereich): Heizstäbe/Nachtspeicherheizungen vs. Wärmepumpen
- Zentrale Systeme (EVUs, Industrie): Elektrokessel vs. Großwärmepumpen
 - E-Kessel: Unterscheidung zw. Widerstandserhitzern und Elektrodenkesseln (u.a. Dampferzeugung mögl.)

- > 35 E-Kessel-Projekte in Deutschland realisiert
- Großwärmepumpen aufgrund begrenzter Einspeise-Temperatur ohne Absenkung der Vorlauf-Temperatur oder Nachheizung zur Integration in FW-Netze nur bedingt geeignet

Anwendungsfelder für PtH


Anwendungsfall Marktumfang **Status Quo** heute primärer langfristig beschränkt Anwendungsfall für PtH Regelenergie auf ca. 2 GW zukünftige Erträge ungewiss, seit (deutschlandweit) 2014 starker Preisverfall Verkauf von abgeregeltem lokaler/regionale Markt, Strom heute aus rechtlicher Netzengpässe abhängig von Netz- und EE -Sicht nicht vorgesehen, => Ausbau partielle Öffnung durch EEG 2016

- negative oder niedrige Strompreise
- deutschlandweiter Markt, abhängig von Strommarktentwicklung und EE Ausbau
- Nutzung von "kostenlosem"
 Strom heute wegen Umlagen
 wenig attraktiv => BMWi strebt
 Änderungen an

4 Spitzenwärmeerzeuger Nur lokal, abhängig von Wärmenetzlast und sonstigen Erzeugern Nur als "letzte" Reserve sinnvoll, da bei Einsatz hohe Kosten entstehen => kann im Einzelfall aber Gas/Ölkessel ersetzen

Marktchance für PtH – heute und zukünftig

- Anwendungsfall 1 ist wegen des engen Marktumfeld z.Z. wenig lukrativ
- Für Anwendungsfall 2 sind erste regulatorische Randbedingungen geschaffen worden
- Für Anwendungsfall 3 sind die Weichen noch zu stellen => Umlagen- und NNE-Regelungen

Power to X

Grundsätzliches

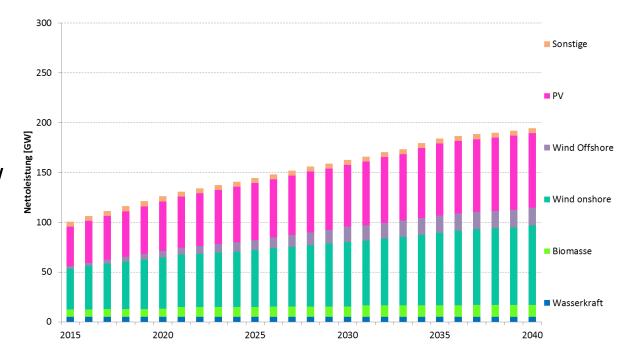
- These: zunehmende Mengen an "Überschussstrom" durch weiteren EE Ausbau => Stromverwendung in anderen Sektoren
- (mindestens) 4 Varianten für die Variable "x" werden diskutiert:
 - Power to Power: Diverse Technologien, z.Z. nur in PsP KW möglich => Potenzial begrenzt
 - Power to Heat: Nutzung als Windwärme => thermische Speicher als "Quasi"-Stromspeicher
 - Power to Mobility: regenerative Ladung von Elektrofahrzeugen
 - Power to Chemicals: Elektrochemische Umwandung (Wasserstoff, Methan, Produktionsprozesse)
- Aber: Über welche Mengen reden wir eigentlich? Und wann fallen Sie an?
 - Spotmarkt 2014: 64 Stunden mit negativen Preisen oder 0
 - Spotmarkt 2015: 129 Stunden mit negativen Preisen oder 0

Überschussstrom

Definitionsmöglichkeiten

- Wann ist Strom eigentlich "Überschussstrom"?
 - Wenn die Börsenpreise niedrig, 0 oder negativ sind?
 => marktinduziertes Überangebot in gesamter Preiszone, bisher rd. 130 h/a
 - Wenn der Netzbetreiber bei Überlastung von Verteil- oder Übertragungsnetz abregeln müsste, d.h. Einspeisemanagement gem. §14 EEG vorliegt?
 technisch bedingte Überlastung (auch lokal), bisher rd. 4,7 TWh (2015)
 - Wenn neg. Regelarbeit angefordert wird?
 => physikalisch induziertes (kurzfristiges) Überangebot in Regelzone
 - Oder erst wenn die Residuallast in Deutschland 0 wird?
 Noch nie vorgekommen, aber fast... (z.B. 8.5.2016)
- Wie wird Überschussstrom bewertet
 - hinsichtlich Primärenergiefaktor => Anpassung der f_{PE}-Faktoren notwendig, sonst verschlechtert sich der Primärenergiefaktor trotz EE Strom-Nutzung
 - Hinsichtlich CO₂-Faktoren

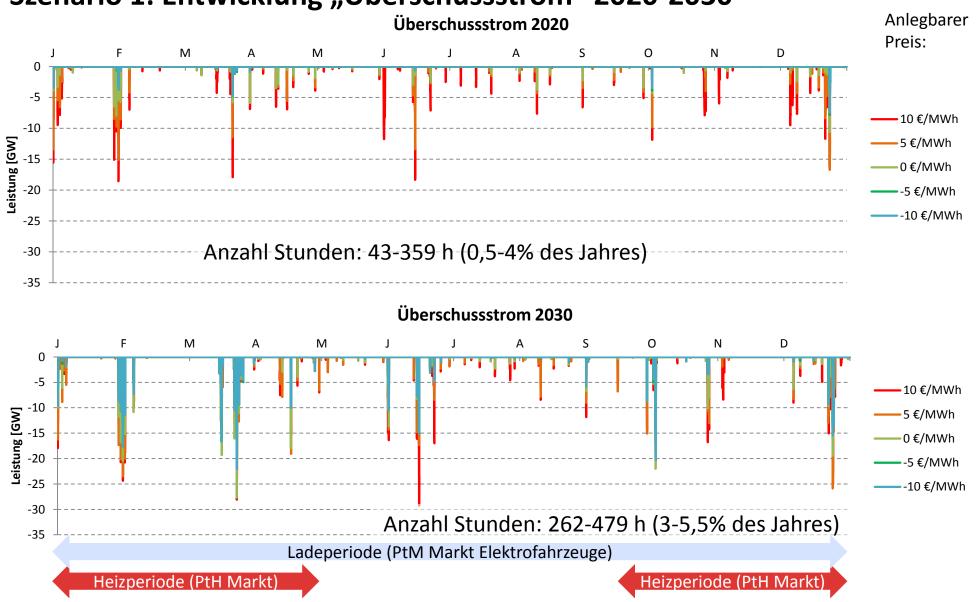
Power to X



Beispielrechnung Szenario 1: vom Status Quo vorwärts gerechnet

- Vorgehensweise
 - Ermittlung der Überschussstrombilanz mit Hilfe des ENERKO-Strommarktmodells
 - Auswertung des Überschussstroms in Abhängigkeit des Preises (von -10... 10 EUR/MWh)

Randbedingungen


- Ökoszenario (insb. weiterer Ausbau Wind, PV auf 150 GW bis 2026) entlang Ausbaukorridor EEG
- Weltmarktpreise aus WEO 2015

Power to X: Auswertungen

Szenario 1: Entwicklung "Überschussstrom" 2020-2030

Überschussstrom als PtH oder PtM?

			Prei	sgrenze [€/M	Wh]	
		-10	-5	0	5	10
	2020	0,09	0,09	0,28	0,74	1,53
Jährlicher	2025	0,26	0,26	0,47	0,86	1,32
Überschussstrom	2030	1,49	1,49	1,78	2,43	3,03
[TWh/a]	2035	4,77	4,81	5,\$5	6,52	6,97
	2040	8,30	8,33	9,05	10,47	10,91

	Bedarf PtH Wärmemarkt: 770 TWh		
	direkt	Wärme- pumpe	
Bei 1% Marktanteil	7,7	2,2	
Bei 5% Marktanteil	38	11	
Bei 20% Marktanteil	154	44	

	Aı	Bedarf PtM ntriebsenergie PKW gesamt: 160 TWh
Bei 1% Anteil (rd. 0,5 Mio. PKW)		1,6
Bei 5% Anteil (2,5 Mio. PKW)		8
Bei 20% Anteil (10 Mio. PKW)		32

 für 20% PtH <u>und</u> PtM Marktanteil wären weitere 80 GWh EE-Strom nötig: Kapazitätsverdopplung bzw. 60 weitere Offshore-Windparks (je 400 MW)

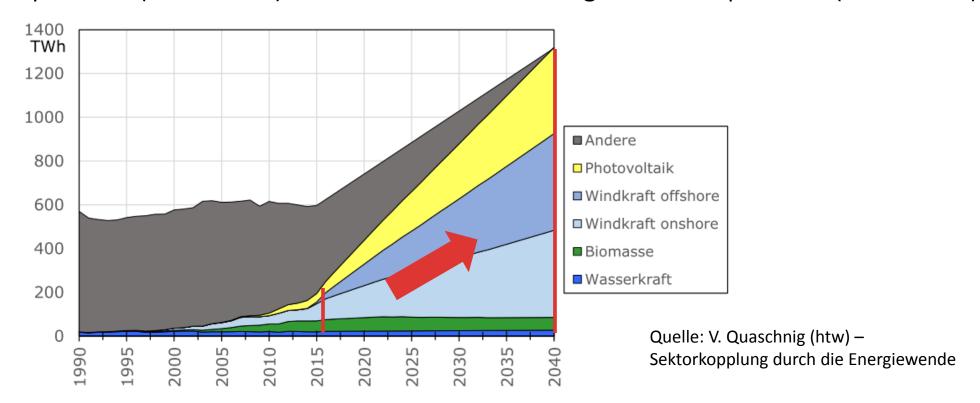
Power to X

Beispielrechnung Szenario 2: vom Ziel rückwärts gerechnet

- Das Erreichen der Klimaziele (-70% bis 2040) erfordert eine Elektrifizierung aller Sektoren
- Gem. Sektorkopplungsstudie der htw* führt dies bis 2040 zu mehr als einer Verdopplung der Stromerzeugung insgesamt – auf den "eigentlichen" Strombedarf entfällt dann weniger als 40% der Erzeugung
- Die Ausbauziele des EEG reichen in keiner Weise aus, um diesen Bedarf zu decken!

Tabelle 11 Entwicklung des Strombedarfs für eine klimaneutrale Energieversorgung mit Effizienzmaßnahmen

Sektoren mit Effizienzmaßnahmen	TWh	Anteil
Stromverbrauch ohne weitere Sektorkopplung	500	37,9 %
Raumwärme und Warmwasser	150	11,4 %
Industrieprozesswärme von Industrie und GHD	250	18,4 %
Verkehr	200	15,2 %
Speicher- und Übertragungsverluste im Stromsektor	220	16,7 %
Summe	1320	100 %


^{*} V. Quaschnig (htw) - Sektorkopplung durch die Energiewende

Power to X

Beispielrechnung Szenario 2: vom Ziel rückwärts gerechnet

Notwendiger Ausbaupfad zur Zielerreichung erfordert eine Verzehnfachung der PV
 Kapazitäten (auf 415 GW) und eine Versieben-fachung der Windkapazitäten (auf 275 GW)

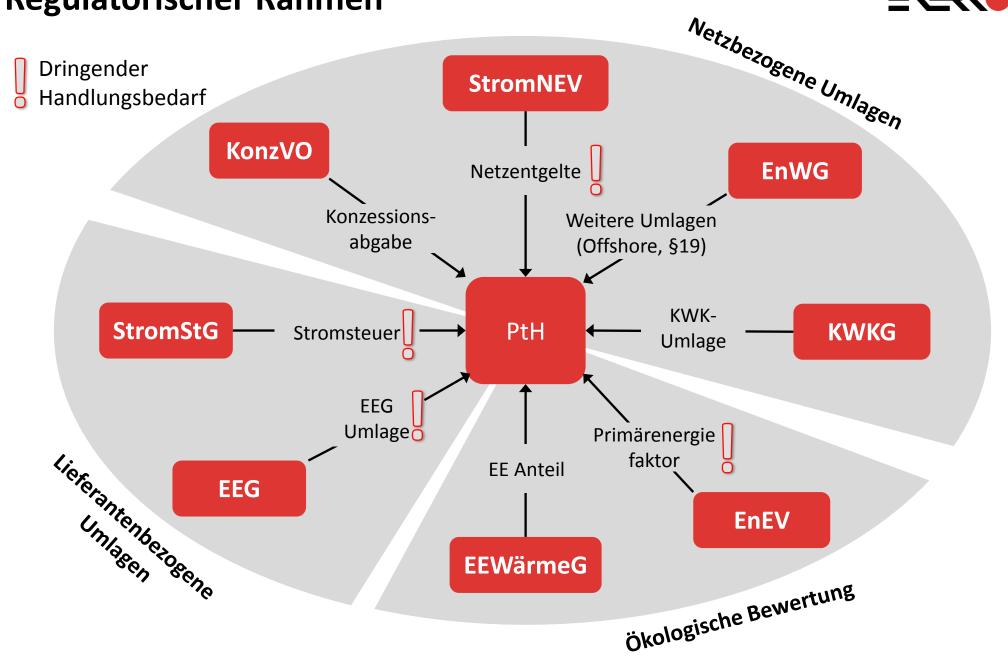


Bild 16 Entwicklung der regenerativen Stromerzeugung und des Stromverbrauchs bis 2040 zum Erreichen einer klimaneutralen Energieversorgung bei Berücksichtigung von Effizienzmaßnahmen

Wir stehen – trotz 15 Jahren EEG - erst am Anfang dieses Transformationsprozesses!

Regulatorischer Rahmen

Zusammenfassung

- Sektorkopplung vorwärts (Wärme => Strom): KWK und Wärmespeicher
 - Wärmespeicher erlauben eine deutlich flexiblere Fahrweise von KWK Anlagen und sind daher auch als "Quasi-"Stromspeicher wirksam – zu deutlich geringeren Investitionskosten als "echte" Stromspeicher (PsP, Batterien)
 - Z.Z. werden vielfach Wärmespeicher zur Flexibilisierung der Erzeugung und als Partner von PtH anlagen gebaut
 - Kommerziell sind nur Heißwasserspeicher darstellbar mit Trend zur Zwei-Zonentechnik
- Sektorkopplung rückwärts (Strom => Wärme): Überschussstrom und Power-to-Heat
 - Es gibt viele Ideen für den Überschussstrom aus Wind + PV
 - Die zur Verfügung stehenden Mengen reichen allerdings ohne massiven EE Ausbau bis 2030 nur für eine geringe Marktdurchdringung im PtH und PtM Markt aus
 - Auch diese moderate Nutzung wird z.Z. durch das aktuelle Strommarktdesign erschwert/verhindert (z.B. pauschalierte NNE, EEG Umlage auch auf Überschussstrom)
 - Überschussstrom steht nur zeitweise auf Stundenebene an dann aber im Bereich
 5,10 oder mehr GW => auch hier sind Wärmespeicher gefragt