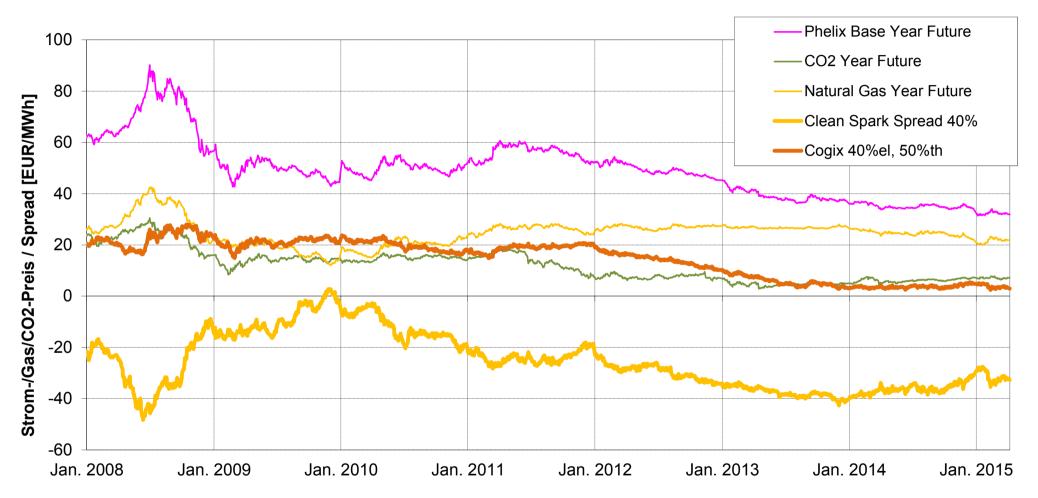
Virtuelle Kraftwerke und Wärmespeicher

Wärmespeicher: Welche Vermarktungsstrategien sind im aktuellen Marktumfeld sinnvoll?

Dr. Armin Kraft
EEB ENERKO Energiewirtschaftliche Beratung GmbH

3.6.2015



Agenda

- Energiemarkt 2015 und Überblick Wärmespeicher
- Einsatzstrategien für Wärmespeicher
 - Einsatzplanung im Verbund mit Kohlekraftwerk
 - Einsatzplanung im Verbund mit flexiblen Gas-Kraftwerken
 - Projektbeispiel: Der Großwärmespeicher in Kiel
- Zukunftsperspektiven und Ausblick
 - Der Wert der Flexibilität: Regelenergie, Realoptionserlöse und Intraday-Vermarktung
 - Wärmespeicher als "besserer" Stromspeicher?

Marktentwicklung 2008-heute

- Gas- und Strompreise nähern sich immer mehr an
- Der Spread sinkt selbst bei hocheffizienten Kraftwerken seit Mitte 2014 leichte gaspreisbedingte Erholung
- Der KWK-Index COGIX ist seit 2012 rückläufig

Stand der KWK Mitte 2015

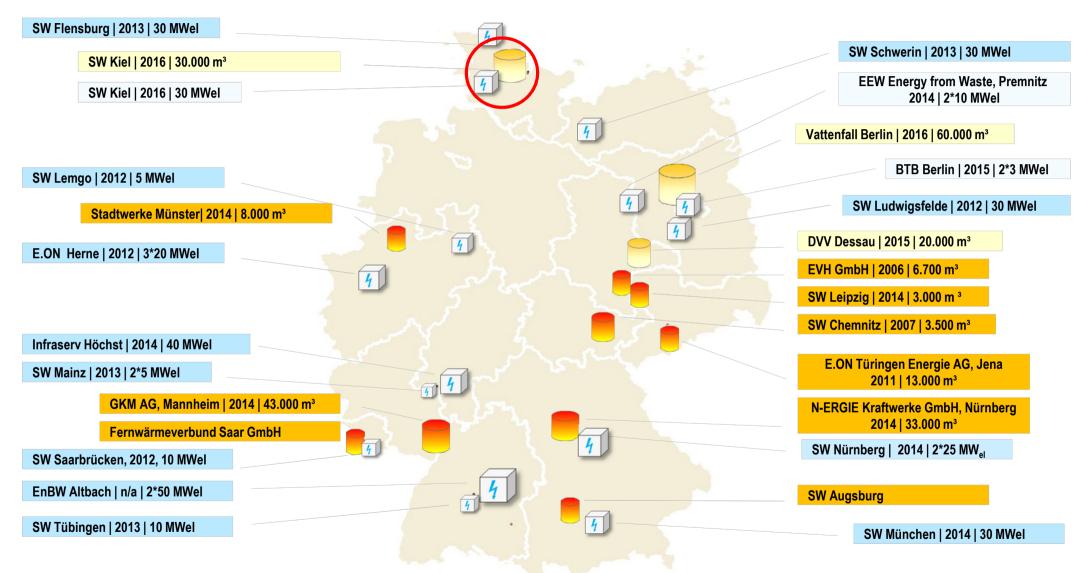
- In den letzten 3 Jahren zeigten sich zwei gegenläufige Tendenzen:
 - KWK-Anlagen zur Eigenstromnutzung sind wegen der Vermeidung stetig steigender Abgaben und Umlagen in vielen Fällen wirtschaftlicher geworden. Das EEG 2014 hat den Vorteil für Neuanlagen reduziert
 - KWK-Anlagen ohne Eigenstromnutzung (Kraftwerke mit Wärmeauskopplung, Heizkraftwerke, Contracting-Anlagen, Wohnungswirtschaft) sind in gleichem Zeitraum zunehmend unwirtschaftlich geworden
- Die Novellierung des KWK-G 2016 soll bis Herbst 2015 abgeschlossen sein:
 - Das KWK Ziel von 25% ist relativiert worden und bezieht sich nun auf die Nettostromerzeugung aus thermischen Kraftwerken => Fokus auf Erhalt der KWK-Erzeugung
 - Die Fördersätze für Neuanlagen sollen gem. BMWi Vorschlag erhöht werden um 1 ct/kWh, Eigenerzeugungsförderung wird reduziert
 - Netz- und Speicherförderung bleibt erhalten bzw. wird leicht verbessert (Verdopplung der maximalen Projektsumme)

Eckpunkte KWK Förderung gem BMWi-Vorschlag

		alt (KWK-G 2012)	neu (Entwurf KWKG 2016)	
KWK-Zuschlag bis 50 kW		5,41	8	
ct/kWh	50-250 kW	4	5	
	250 kW-2 MW	2,4	3,4	
	>2 MW	1,8	2,8	
	ETS Anlagen	0,3	0,3	
Förderdauer	bis 50 kW	10 Jahre	45.000 VBh	
	> 50 kW	30.000 VBh	30.000 VBh	
Wärmespeicher	kleine Speicher (<50 m³)	250 EUR/m³	250 EUR/m³	
	Große Speicher	250 EUR/m³, max. 30%	250 EUR/m³, max. 30%	
	Maximal Projektförderung	5 Mio. EUR	10 Mio. EUR	

Quelle: BMWi Eckpunktepapier

Strommarkt, März 2015



Übersicht Speichertypen

	Drucklose (atmosp	Druckspeicher			
	1 Zonen speicher	2 Zonen Speicher			
Prinzip	98°C	115°C			
Volumen	Bis rd. 60.000 m³	Bis rd. 60.000 m³	Modular, Einzelbehälter bis 150 m³		
Max. Temperatur	98°C	bis 115°C (abhängig vom Wasserpolster)	Bis ca. 140 °C		
Spez. Kapazität (bei 60° Rücklauftemperatur)	44 kWh/m³	Bis 64 kWh/m³	Bis ca. 90 kWh/m³		
Kosten (ca.)	300-500 EUR/m³	400-700 EUR/m³	800-1.200 EUR/m³		

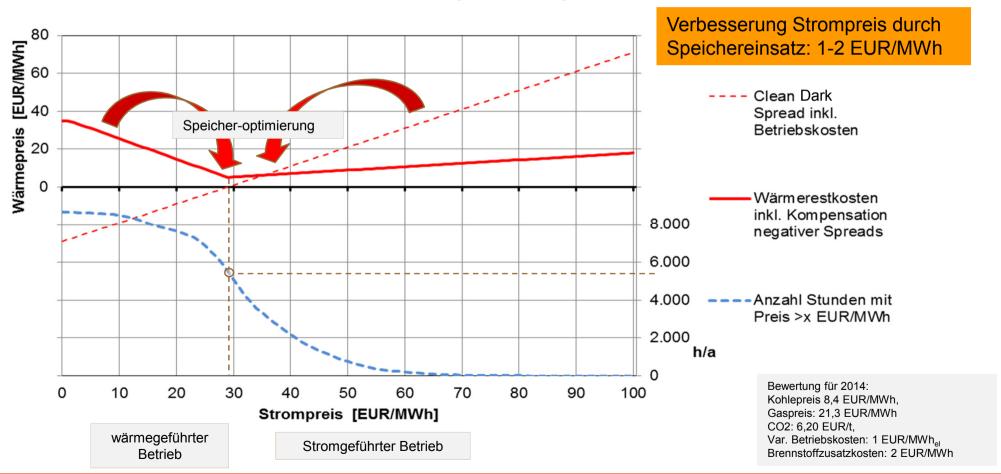
Überblick Wärmespeicher- und PtH-Projekte in Deutschland

Agenda

- Energiemarkt 2015 und Überblick Wärmespeicher
- Einsatzstrategien für Wärmespeicher
 - Einsatzplanung im Verbund mit Kohlekraftwerk
 - Einsatzplanung im Verbund mit flexiblen Gas-Kraftwerken
 - Projektbeispiel: Der Großwärmespeicher in Kiel
- Zukunftsperspektiven und Ausblick
 - Der Wert der Flexibilität: Regelenergie, Realoptionserlöse und Intraday-Vermarktung
 - Wärmespeicher als "besserer" Stromspeicher ?

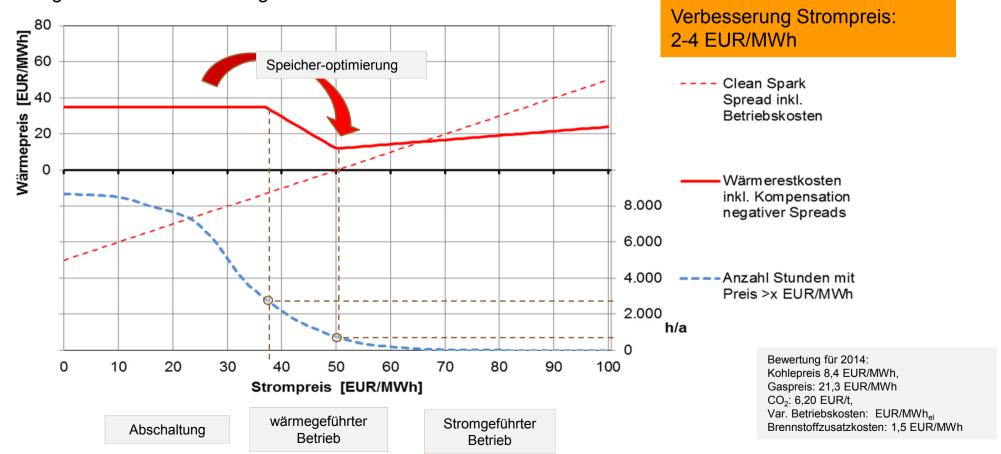
Flexibilisierung KWK-Kraftwerke durch Speicher und E-Kessel

- Durch niedrige Spreads sind die meisten Kraftwerke nicht mehr dauerhaft "im Geld"
- KWK-Anlagen ohne Wärmespeicher <u>müssen</u> Stunden mit geringen Strompreisen "überfahren" oder Heizwerke einsetzen
- KWK-Anlagen mit Wärmespeicher suchen sich die besten Stunden ja Tag zur Wärmeproduktion aus (Cherry picking)
- Flexible KWK-Anlagen mit Wärmespeicher produzieren feste Fahrpläne (Day Ahead) und haben Möglichkeiten der Intraday Optimierung
- Wärme lässt sich (über einen Tag) quasi verlustfrei speichern => aber technisch anspruchsvoll
- KWK-Anlagen k\u00f6nnen die Produktion automatisch der Strom-Nachfrage anpassen, Begrenzung \u00fcber den W\u00e4rmebedarf
- Wärmespeicher sind günstig im Vergleich zu Stromspeichern
 - Investition (Förderung durch KWK-G) / Betriebskosten / Umwandlungsverluste
- Je höher die Stromkennzahl desto größer der wirtschaftliche Hebel für den Speichereinsatz
- Speicher und E-Kessel ergänzen sich gut
- Je schlechter der Strommarkt wird, desto höher wird das Optimierungspotenzial durch (Wärme-)Speicher !!



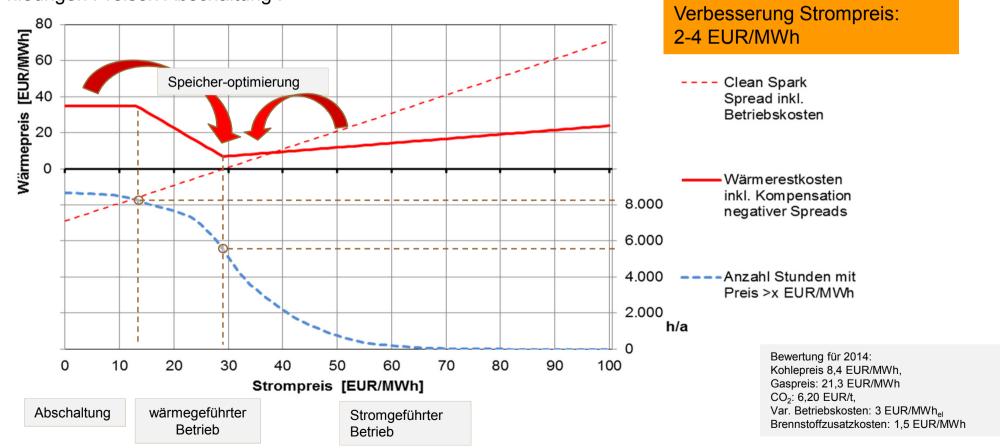
Speicherneubau am GKM Mannheim

Wärmerestkosten KWK-Kraftwerke: Beispiel Steinkohle-KW (45%)


- KW im Geld: Bei positivem Clean Dark Spread (CDS) sind die variablen Kosten der Fernwärmeauskopplung durch die Stromeinbusse bestimmt (Volllastbetrieb)
- KW nicht im Geld: Bei negativem CDS sind zusätzlich negative Deckungsbeiträge in die Fernwärmekosten einzupreisen, da der Block im Bereich der stromseitigen Minlast gefahren werden muss

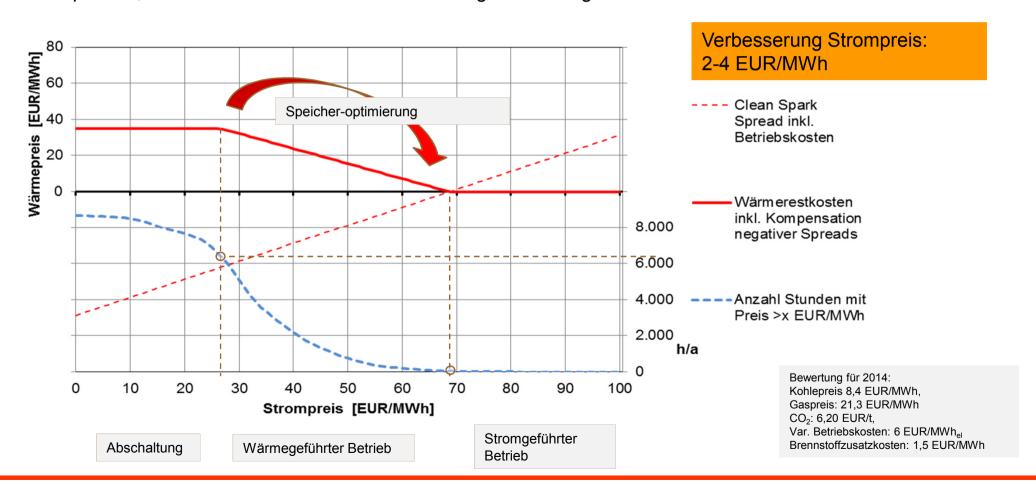
Wärmerestkosten KWK-Kraftwerke: GuD-KW (56%, ohne KWK-G)

- KW im Geld: Bei positivem Clean Spark Spread (CSS) sind die variablen Kosten der Fernwärmeauskopplung durch die Stromeinbusse bestimmt (Volllastbetrieb) => kommt kaum vor !
- KW nicht im Geld: Bei negativem CSS sind zusätzlich negative Deckungsbeiträge in die Fernwärmekosten einzupreisen, da der Block im Bereich der stromseitigen Minlast gefahren werden muss => bei hinreichend niedrigen Preisen Abschaltung!



Wärmerestkosten KWK-Kraftwerke: Beispiel GuD-KW (mit KWK-G)

 KW im Geld: Bei positivem Clean Spark Spread (CSS) sind die variablen Kosten der Fernwärmeauskopplung durch die Stromeinbusse bestimmt (Volllastbetrieb)


KW nicht im Geld: Bei negativem CSS sind zusätzlich negative Deckungsbeiträge in die Fernwärmekosten einzupreisen, da der Block im Bereich der stromseitigen Minlast gefahren werden muss => bei hinreichend niedrigen Preisen Abschaltung!

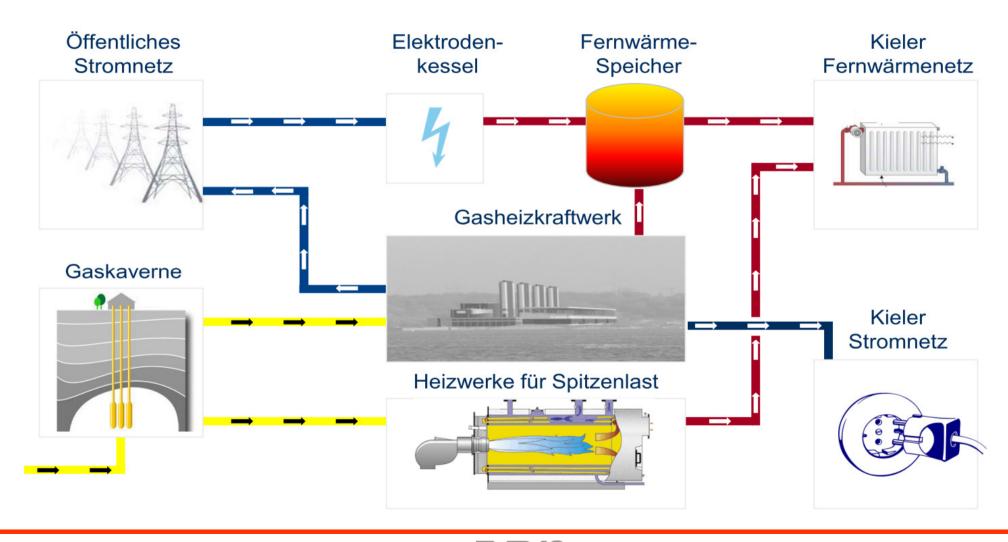
Wärmerestkosten KWK-Kraftwerke: Motor-BHKW (42%, ohne KWK-G)

- KW im Geld: Bei positivem Clean Spark Spread (CSS) sind die variablen Kosten der Fernwärmeauskopplung 0 (keine Stromeinbusse) => kommt kaum vor
- KW nicht im Geld: Bei negativem CSS sind zusätzlich negative Deckungsbeiträge in die Fernwärmekosten einzupreisen, da der Block im Bereich der stromseitigen Minlast gefahren werden muss

Praxisbeispiel*: Wärmespeicher und KWK-Erzeugung in Kiel

- Ausgangssituation:
 - Die Stadtwerke Kiel betreiben zusammen mit E.ON ein kohlegefeuertes Heizkraftwerk (320 MW) in Kraft-Wärme-Kopplung (KWK) an der Kieler Förder
 - inzwischen werden 1/3 aller Gebäude in Kiel mit Fernwärme beheizt und die Stadtwerke Kiel wollen diesen Anteil weiter steigern.
 - Das GKK ist das "Arbeitspferd" der Fernwärme-Versorgung Kiel
 - Das Heizkraftwerk wurde in 1970 errichtet, nach 45 Jahren Betrieb ist bald das Ende Lebensdauer erreicht
 - Verfügbarkeit und Wirtschaftlichkeit haben sich in den letzten Jahren deutlich verschlechtert

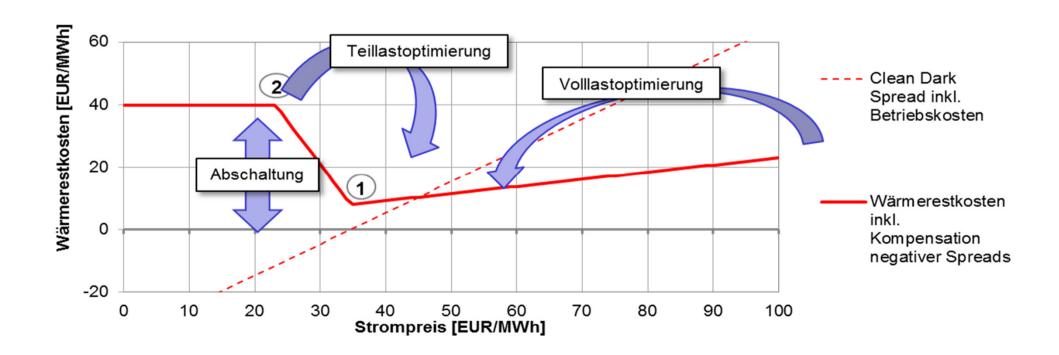
^{*)} mit freundlicher Genehmigung der Stadtwerke Kiel



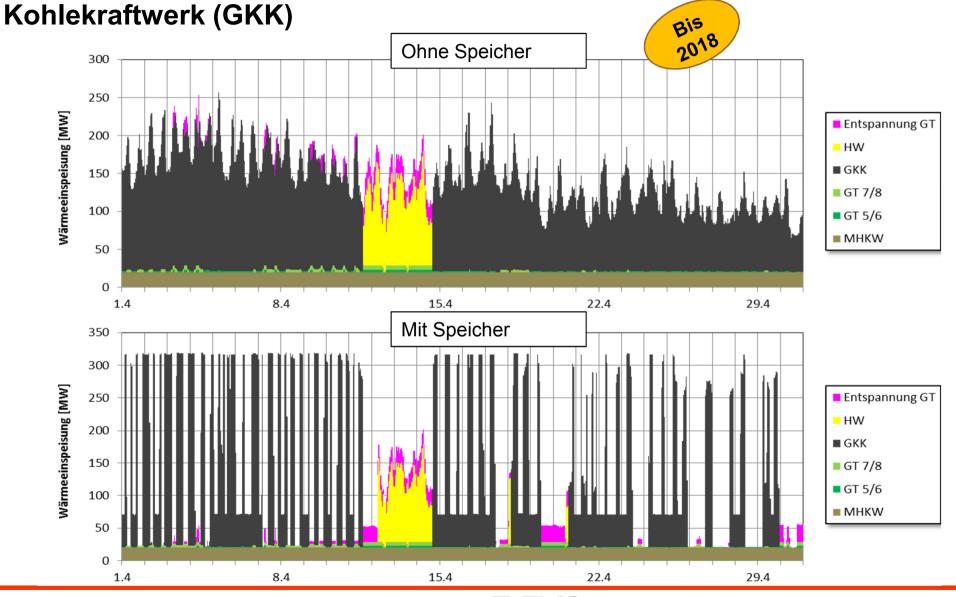
Historie des Projektes

2000-2006:	Beginn der Voruntersuchungen GKK Nachfolge (Kohlebasis)
2007	Plan A : Start der Planung mit Fokus Großes Steinkohlekraftwerk (800-1100 MW)
2008	Bewertung Kohleblock (groß/klein) und gasbasierte Alternativen
2008/2009	Widerstand gegen Steinkohle, Bürgerproteste, verschlechterte Wirtschaftlichkeit => Projektstopp Kohleblock
2009	Plan B: Untersuchung GuD (400 MW –Klasse)
2010	Plan C : Fernwärmeschiene nach Neumünster und (Mit-)Nutzung der dort vorhandenen Kapazitäten
2011	Plan D : Untersuchung an Wärmebedarf angepasster Gas KWK (Motoren / Turbinen, max 200 MW) mit Wärmespeicher
2013	Grundsätzlicher Beschluss zur Umsetzung des Motoren-Konzeptes, Beginn der vorbereitenden Arbeiten (Grundstück, Baufeldfreimachung, Gasanbindung)
2014	Bauentscheidung 30.000 m³ Speicher und Elektrokessel, Bauentscheidung Großmotoren-KW ist noch offen
2015	Beginn Wärmespeicherbau

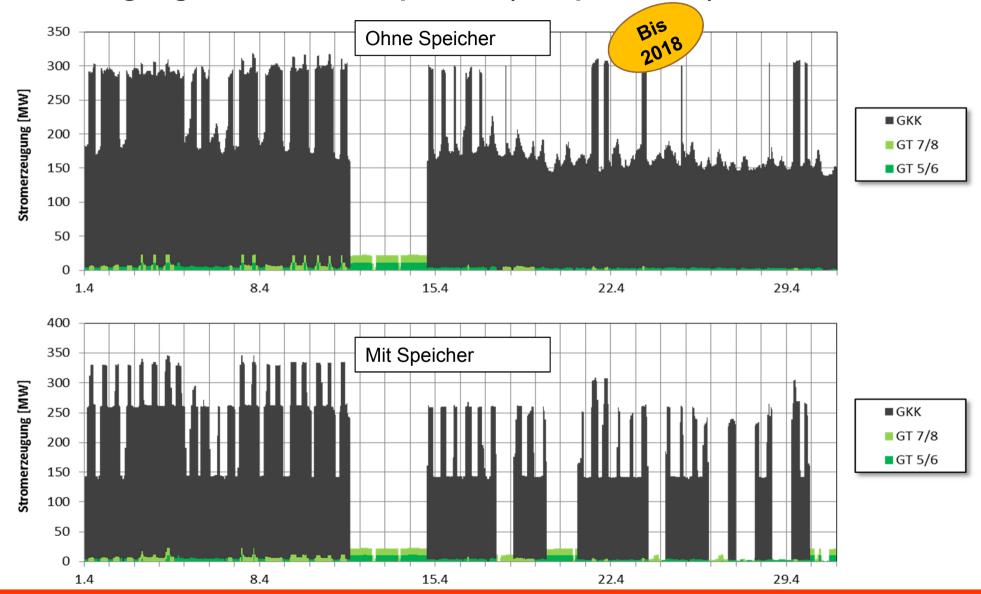
Konzept des GHKW: Kombination aus Gasspeicher, Wärmespeicher, Flexibler KWK-Anlage und Elektrokessel


Grundprinzip Wärmespeichereinsatz und Elektrokessel

		Stromgeführter Einsatz	Wärmegeführter Einsatz
Bis 2018	Betrieb mit Kohlekraftwerk GKK (alt, bis 2018) => Variables Strom/Wärtmeverhältnis Prinzip der Entnahmekondensation	 Verringerung der Wärmeauskopplung und Erhöhung der Stromproduktion in Zeiten hoher Strompreise => Entladung Speicherladung in Zeiten mittlerer Strompreise Vermeidung von Minlastbetrieb (z.B. Nachtabschaltung) Neg. Regelleistung durch E-Kessel/Speicher-Kombination 	 Dämpfung thermischer Lastspitzen im Netz Durch Zwei- Zonen Speicherkonzept auch bei Netztemperaturen >100 °C einsetzbar ohne Nachheizung Zusätzliche schnelle Reserveleistung in Verbindung mit E-Kessel,
Ab 2019	Betrieb mit modularem Motoren-Kraftwerk (neu, geplant ab 2019) => Festes Strom/Wärmeverhältnis, Prinzip der Gegendruck- Turbine	 <u>Erhöhung der Wärmeauskopplung</u> und Erhöhung der Stromproduktion in Zeiten <u>hoher Strompreise</u> => Ladung Abschaltung in Zeiten negativer spreads => Entladung Neg. Regelleistung durch E-Kessel/Speicher-Kombination 	 Dämpfung thermischer Lastspitzen im Netz Durch Zwei- Zonen Speicherkonzept auch bei Netztemperaturen >100 °C einsetzbar Zusätzliche schnelle Reserveleistung in Verbindung mit E-Kessel,


Ermittlung Wertbeitrag Speicher: Methodisches Vorgehen

- Die Bewertung baut auf einem integierten Kalkulationsmodell der EEB Enerko auf, das auch bereits in vorangegangenen Studien für die Stadtwerke Kiel eingesetzt wurden.
- Optimiert werden alle Einsatzparameter bzw. Aktivitäten in den vorgegebenen Einsatzgrenzen unter Maßgabe der Kostenminimierung des Gesamtsystems auf Stundenebene.
- Das hier gezeigte Energieszenario basiert auf den Forward-Preisen Oktober 2014



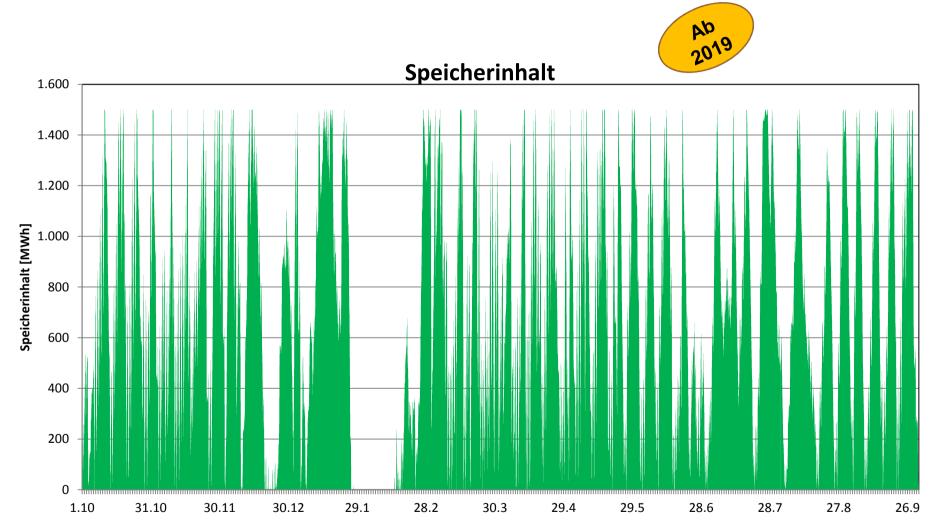
Wärmeerzeugung mit und ohne Speicher (Beispielmonat) – Parallelbetrieb mit

Stromerzeugung mit und ohne Speicher (Beispielmonat)

1.4

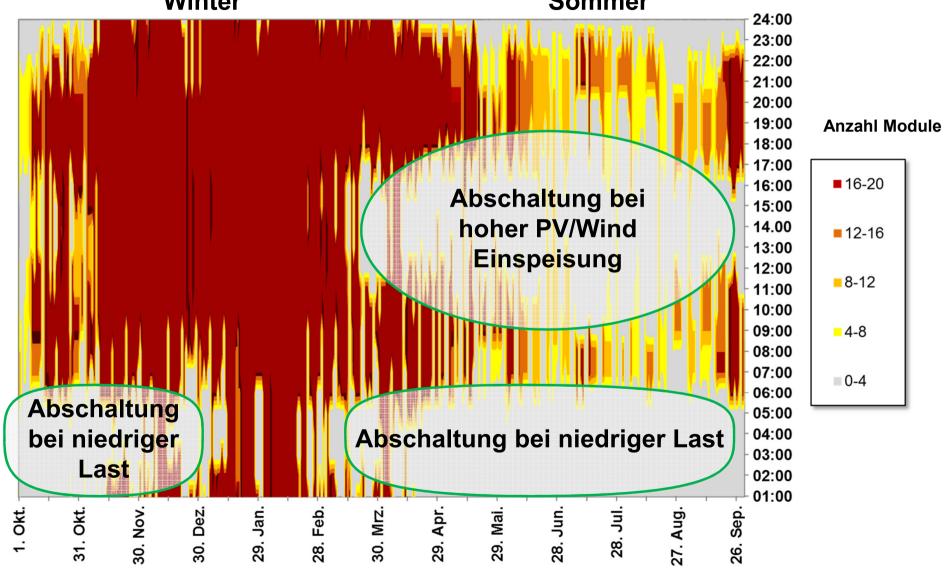
8.4

Wärmeerzeugung mit und ohne Speicher (Beispielmonat) – Parallelbetrieb mit flexiblem Gaskraftwerk dA 300 Nur Pufferspeicher (1.000 m³) 250 ■ GHKW Wärmeeinspeisung [MW] ■ Entspannung GT 200 ■ HW 150 ■ Flektrodenkessel ■ GT 7/8 100 ■ GT 5/6 50 ■ MHKW 8.4 15.4 22.4 29.4 300 Mit Groß-Speicher (30.000 m³) 250 ■ GHKW Wärmeeinspeisung [MW] ■ Entspannung GT 200 ■ HW 150 Elektrodenkessel ■ GT 7/8 100 ■ GT 5/6 50 Leistungsvorhaltung für Regelleistung


22.4

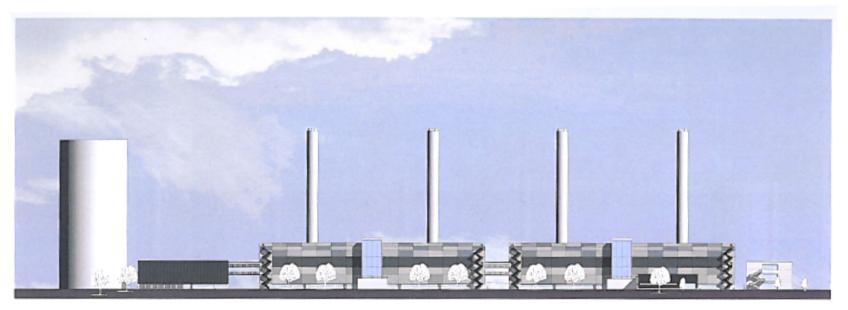
29.4

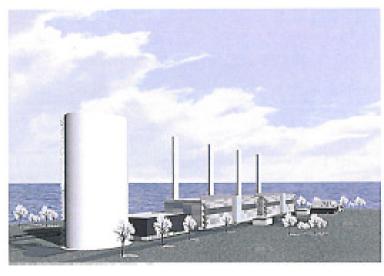
15.4


Speicherladezustand – Parallelbetrieb mit flexiblem Gaskraftwerk

Der Speicher wird ganzjährig eingesetzt ausser bei Maximallast: rd. 100 Ladezyklen

Kraftwerkseinsatz GHKW: eine ideale Ergänzung erneuerbarer Erzeugung! Winter Sommer

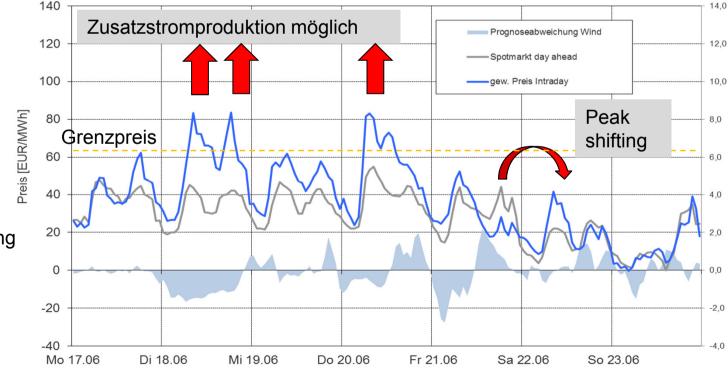

Stand des Projektes: Baufeld Mai 2015



Visiualisierung Motoren-HKW und Wärmespeicher

Fazit zum Projekt Kiel

- Der Zubau des Wärmespeichers führt zu einem großen Flexibilitätsgewinn:
 - Während des Parallelbetrieb von Speicher und kohlegefeurten GKK (Restlebensdauer) lassen sich signifikante Vorteile erschließen durch höhere Wertigkeit des erzeugten Stroms und Einsparungen bei der Brennstoffbeschaffung (Erdgas und Kohle).
 - Nach Inbetriebnahme des neuen Motoren-HKW ändert sich die Betriebsweise des Speichers, führt aber ebenfalls zu erheblichen Einsatzvorteilen
- Kombination aus Motoren-HKW, Speichersystem (Erdgas + Wärme) und Elektrokessel ist ein wichtiger Baustein der Energiewende
- Aber: Das Gesamtprojekt mit hochflexiblem Motoren-Heizkraftwerk ist weiterhin wegen des schwierigen Marktumfeldes wirtschaftlich unter hohem Druck:
 - Verbesserung KWK-Förderung in der Größenordnung des BMWi-Vorschlags ist unabdingbar
 - Stabilisierung des Marktumfeldes (Marktdesign, ETS, Regulatorische Anforderungen) wäre wünschenswert


Agenda

- Energiemarkt 2015 und Überblick Wärmespeicher
- Einsatzstrategien für Wärmespeicher
 - Einsatzplanung im Verbund mit Kohlekraftwerk
 - Einsatzplanung im Verbund mit flexiblen Gas-Kraftwerken
 - Projektbeispiel: Der Großwärmespeicher in Kiel
- Zukunftsperspektiven und Ausblick
 - Der Wert der Flexibilität: Regelenergie, Realoptionserlöse und Intraday-Vermarktung
 - Wärmespeicher als "besserer" Stromspeicher?

Zusatznutzen Wärmespeichersysteme

- Speicher sind ein wichtiges Instrument in der Intradayvermarktung und ermöglichen Realoptionserlöse
- In Verbindung mit flexiblen Erzeugern (Motoren-Kraftwerken, Elektrokessel) erweiterte Regelenergie-Flexibilität
- Minimierung von Fahrplanabweichungen (Wärme, Gas und Strom) durch Ausregeln von Prognoseabweichungen

Beispiel: Nachvermarktung im Intraday handel

Ausblick: Sind Wärmespeicher die "besseren" Stromspeicher?

		Stromspeicher		Wärmespeicher				
		Pumpspeicher-KW	Batterie		Druckspeicher große atmosphärische Speicher			ische Speicher
		Großanlage (z.B: Goldisthal)	groß- technisch	klein (PV- Speicher)	Wärme aus BHKW (2 MW)	Wärme aus BHKW/GT	Wärme aus GuD	Bemerkung
Leistung	Mw _{el}	1.000	25	0,005	-	-	-	
	MW_{th}	-	-	-	2	250	250	bei 115/60°C
Wasservolumer	n m³	12.000.000	-	-	200	30.000		
Stromkennzahl		-	-	-	0,8	1,0	0,2	~1 bei Motor, sonst Stromverlustkennziffer
Entladedauer	in h	8	4	4	4	6	6	
Entladearbeit	MWh _{el}	8.000	100	0,02	6,4	1.500	300	Stromäquivalent
	MWh_{th}	-	-	-	8	1.500	1.500	
Lebensdauer in Zyklen		14.600	5.000	2.500	3.000	3.000	3.000	PsP: 40 a, WSp: 15 a
Zyklen pro Jahr		365	365	365	100	100	100	·
Invest	in tEUR	600.000	30.000	10	200	18.000	18.000	
Invest	in €/kWh Kapazität	75	300	500	31	12	60	
Capex	in €/Entladeyzklus	106.849	6.600	4	100	9.000	9.000	
Capex	in €/MWh / Zyklus	13	66	220	16	6	30	
Wirkungsgrad		80%	95%	90%	98%	98%	98%	
Kosten	pro MWh _{el}	17	69	244	16	6	31	

- Überschlagsrechnung ohne Betriebskosten
- Abschätzungen zu Invest, Wirkungsgrad und Zyklen, je nach Projekt ergeben sich deutliche Unterschiede
- Grundsätzlich ist ein Wärmespeicher wegen der Abhängigkeit vom Wärmebedarf "nur" ca. 50% der Zeit einsatzfähig, dennoch sind seine Fixkosten geringer als die von Stromspeichern (PSK, Batterie)

Zum Schluss: Wer wir sind....

EEB ENERKO Energiewirtschaftliche Beratung GmbH

www.enerko.de Landstrasse 20 • 52457 Aldenhoven • Telefon: 0 24 64 / 971 –537 • armin.kraft@enerko.de