Kraftwerke –

Rückgrat der Energieversorgung

Flexibilisierung der dezentralen Stromerzeugung in einem schwierigen Marktumfeld

Dr. Armin Kraft
EEB ENERKO Energiewirtschaftliche Beratung GmbH

Unabhängige Gesellschaften, gegründet 1980 – rd. 80 Mitarbeiter

Energiewirtschaftliche Beratung GmbH

Aldenhoven bei Aachen und Berlin

ESW ENERKO
Wirtschaftsberatung
GmbH,
RA'e Achterwinter

Düsseldorf

Strategie und Konzepte

- Unternehmensentwicklung
- Klimaschutz- und Energiekonzepte
- Studien und Gutachten zur ökonomischen und ökologischen Optimierung von Systemen

Energiewirtschaftliche Beratung

- Unternehmensbewertung
- Netzbewertung und –Kauf
- Netznutzungsentgelte
- Strom- & Gasbeschaffung
- Emissionshandel

Technische Planung

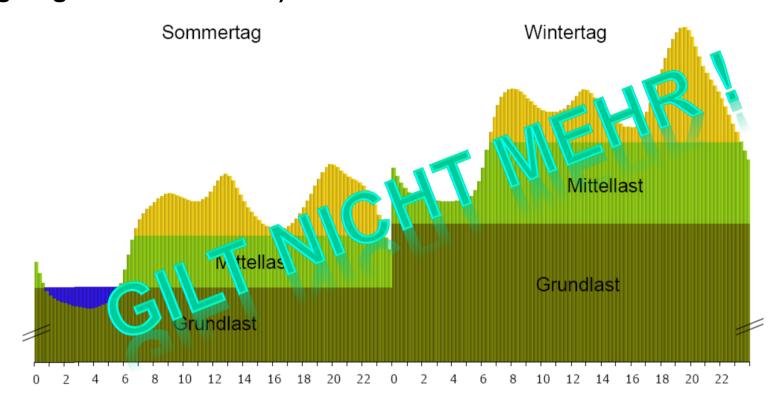
- Heizkraftwerke mit fossilen und regenerativen Energieträgern
- Netze S, G, FW
- Speicher für FW und Gas
- Windkraft- + PV+ Biomasse -Anlagen

EES ENERKO Energy Solutions GmbH

Aachen

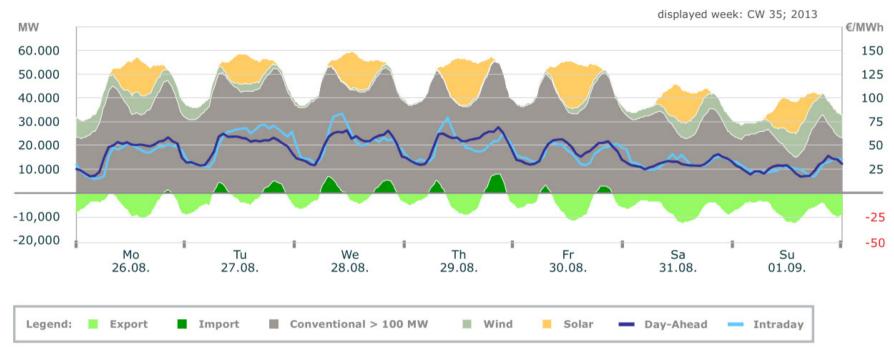
ENERKO Informatik GmbH

Aachen



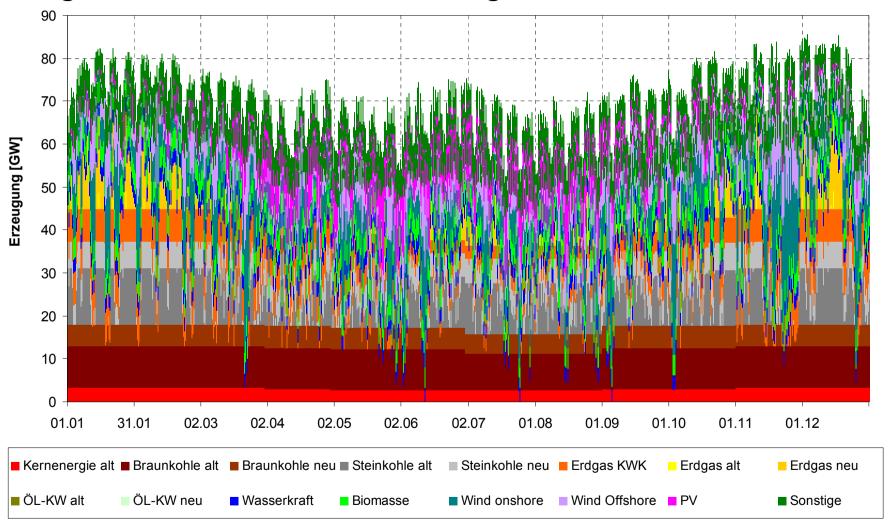
Agenda

- Energiemarkt 2013
- KWK-Regelkraftwerke: Chancen und Risiken
- Wärmespeicher als Element der Flexibilisierung
 - Warum KWK ?
 - Technologien und Einsatzmöglichkeiten
 - Wärmespeicher: der "bessere" Stromspeicher?
- Flexibles Großmotorenkraftwerk mit Wärmespeicher
 - Gasmotoren contra Gasturbinen
 - Einsatzstrategien
- Fazit und Ausblick


Die Vergangenheit: "klassische" Aufteilung der Lastbereiche (gültig von 1900 – 2008)

- Grundlast: Laufwasserkraftwerke, Kernkraftwerke und Braunkohle (Im Sommer Revisionszeiten)
- Mittellast: Steinkohle, KWK-Anlagen, Erdgaskraftwerke
- Spitzenlast: Gasturbinen, Öl-Kraftwerke und Pumpspeicher

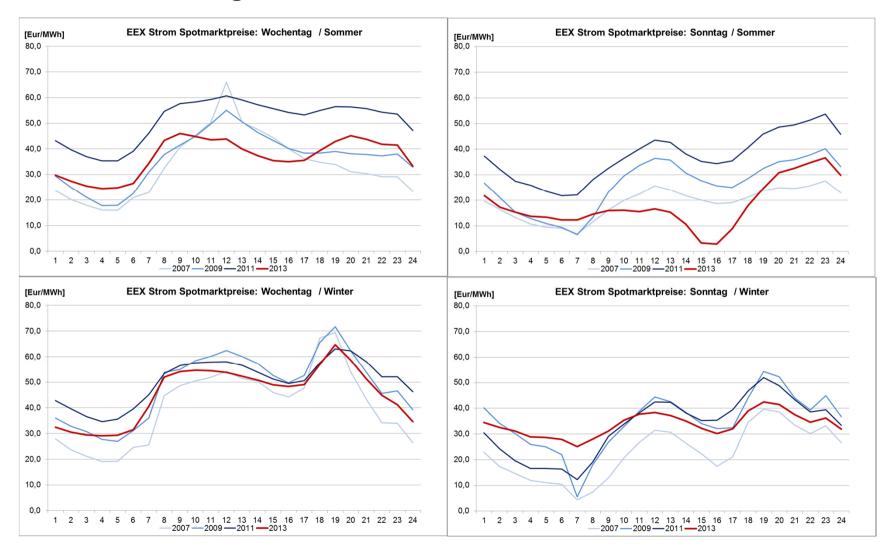
Die Gegenwart: PV (im Sommer) und Wind (ganzjährig) schaffen neue Lastverhältnisse!



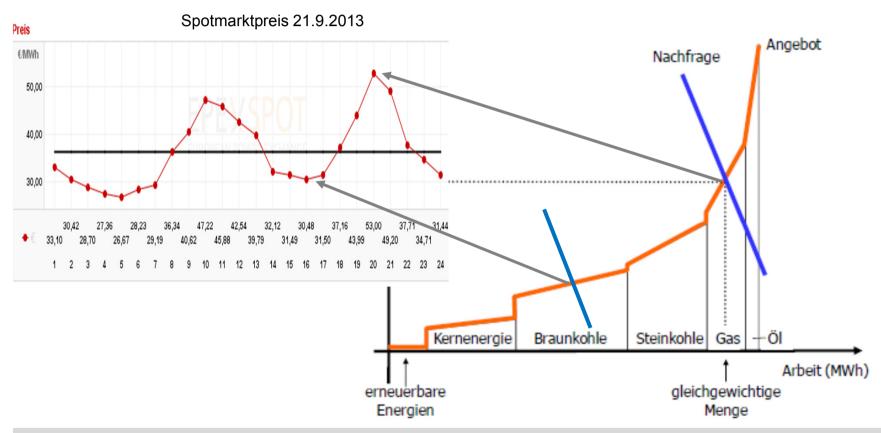
Quelle: Fraunhofer ISE, www.ise.fraunhofer.de

- Die Grundlast ist noch weitgehend vorhanden und wird von Braunkohle und Kernkraft abgedeckt
- Mittellastkraftwerke verlieren massiv an Laufzeiten und erfahren stärkere Lastwechsel
- Spitzenlast wird gebraucht, aber nicht bezahlt
- Import/Exportsaldo spiegelt zunehmend die Residuallast nach PV / Wind wider !

Die Zukunft: Ganzjährig fluktuierende Einspeisung Erneuerbarer Energien – Strommarktmodellrechnung für 2016


Marktentwicklung 2008-heute

- Gas- und Strompreise nähern sich immer mehr an
- Der Spread sinkt selbst bei hocheffizienten Kraftwerken
- Fazit: Alle wollen hochflexible Gaskraftwerke haben keiner will sie bauen!



Marktentwicklung 2008-heute: Volatilität und PV-Einfluss

Großhandelspreise: Fundamentaltheorethische Herleitung durch Angebot und Nachfrage

EEG Anlagen verschieben die Merit Order zunehmend nach rechts => sinkende Preise => sinkende
 Deckungsbeiträge => keine ausreichende Investitionsanreize mehr!

Was kann KWK zur Problemlösung beitragen?

Herausforderung	Beitrag KWK	Techn. Eignung	Hemnisse	
1) Prognose- abweichungen => Bedarf an Regelenergie	Lieferung von Regelenergie, Teilnahme am Regelenergiemarkt	Schnellstartfähigkeit oft gegeben, Entkopplung Strom/Wärme durch Pufferspeicher möglich	Aufwändige Präqualifikation, Dispatch und MSR, bei Anlagen <5 MW Anlagenpool nötig	
2) Hohe Residuallast "Windstille Winterabend"	Volle Leistungs- lieferung zur Netzstabilisierung	Hohe Verfügbarkeit, wärmegeführte Anlagen automatisch "peaklastig"	Fehlende Strommarktkopplung bei "üblichem Preis", keine Leistungsprämie	
3) Steile Lastgradienten	Spitzenlastlieferung, schnelle Regelung	Große Last-Änderungs- geschwindigkeit, Entkopplung durch Speicher	Fehlende Strommarktkopplung keine ausreichenden Marktanreize, keine ¼ Produkte, Handelsanbindung nötig	
4) Niedrige/negative Residuallast "sonniger Sonntag nachmittag"	Abschaltung, Speichernutzung (Elektrodenkessel)	Bei Speichernutzung gegeben	Keine Abschaltanreize, Regularien (StromSt, KWK- G, Eigenstrom) verbieten z.T. optimierten Betrieb	

Warum KWK?

- Anteil KWK > 60%
- Anteil KWK > 50%
- Primärenergiefaktor f_{PE} möglichst gering

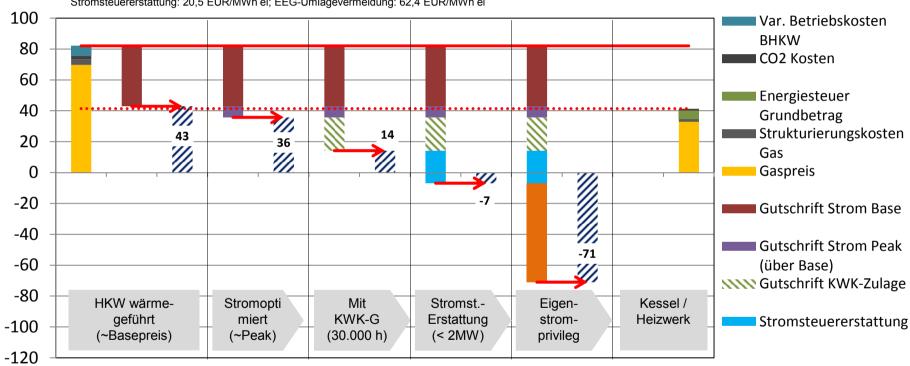
- KWK-G Netzförderung
- EEWärmeG
- EnEV

Warum Gas (-KWK) ?

- Gas ist aktuell günstig (Strom leider auch…)
- Flexibilisierung im Brennstoffeinsatz möglich (Biomethan, später Windgas)
- Geringe CO₂ Kosten
- i.d.R. schon erschlossen (Gas- Spitzenheizwerke)
- Kaum Akzeptanz für Kohle-neubauten!

Warum Gasmotoren / Gasturbinen?

- Schnellstartfähig
 - Stunden mit geringen Stromerlösen müssen nicht "überfahren" werden
 - Chance auf Zusatzerlöse aus Minutenreserve und Sekundärregelleistung
- Guter Gesamtnutzungsgrad → in KWK wichtiger als ein optimierter Stromwirkungsgrad
- Investitionen geringer als GuD (mit Wärmeauskopplung)
- Breites Angebot in allen Leistungsklassen (Modularer Aufbau mit hoher Gesamtverfügbarkeit möglich)



Beispielrechnung: Vorteil KWK (eta 44% _{el}) gegen Heizwerk

€/MWh th Wärmerestkosten BHKW nach Stromvergütung

Erdgaspreis: 27 EUR/MWh (Ho); Basepreis Strom: 38 EUR/MWh el; Peakpreis Strom: 45 EUR/MWh el

Strukturierungskosten Gas: 1,5 EUR/MWh (Hu); CO2-Preis aktuelles Jahr: 5 EUR/EUA; Energiesteuer Grundbetrag: 5 EUR/MWh Hu (für HW im CO2 Handel) Stromsteuererstattung: 20,5 EUR/MWh el; EEG-Umlagevermeidung: 62,4 EUR/MWh el

- Vorteil Wärmeerzeugung in KWK gegen HW auch in schwieriger Marktsituation gegeben (aber nicht mehr so deutlich)
- Mit KWK Förderung werden neben den Grenzkosten auch die Vollkosten getragen

Wärmespeicher als Flexibilitätselement

- Strompreisschwankungen i.d.R. bezogen auf einen Tag
 - Speicherung über mehrere Tag meist unwirtschaftlich
- KWK-Anlagen ohne Wärmespeicher <u>müssen</u> Stunden mit geringen Strompreisen "überfahren" oder Heizwerke einsetzen
- KWK-Anlagen mit Wärmespeicher suchen sich die besten Stunden ja Tag zur Wärmeproduktion aus (Cherry picking)
- Flexible KWK-Anlagen mit Wärmespeicher produzieren feste Fahrpläne (Day Ahead) und haben Möglichkeiten der Intraday Optimierung
- Wärme lässt sich (über einen Tag) quasi verlustfrei speichern
- KWK-Anlagen können die Produktion automatisch der Strom-Nachfrage anpassen, Begrenzung über den Wärmebedarf
- Wärmespeicher sind günstig im Vergleich zu Stromspeichern
 - Investition (Förderung durch KWK-G) / Betriebskosten / Umwandlungsverluste
- Je höher die Stromkennzahl desto größer der wirtschaftliche Hebel für den Speichereinsatz
 - => ideale daher Wärmeauskopplung im Gegendruckprinzip

Speicherneubau am GKM Mannheim

Wärmespeicher: der "bessere" Stromspeicher?

		Stromspeicher			Wärmespeicher			
		Pumpspeicher-KW	Batterie		Druckspeicher	große atmosphärische Speicher		
		Großanlage		klein (PV-	Wärme aus	Wärme aus	Wärme aus	
		(z.B: Goldisthal)	großtechnisch	Speicher)	BHKW (2 MW)	BHKW/GT	GuD	Bemerkung
Leistung	Mw _{el}	1.000	25	0,005	-	-	-	
	MW_{th}	-	-	-	2	200	200	bei 98/60°C
Wasservolumen	m³	12.000.000	-	-	200	30.000	30.000	
Stromkennzahl			-	-	0,8	1,0	0,2	~1 bei Motor, Stromverlust- kennziffer bei Auskopplung aus Dampfkreislauf
Entladedauer	in h	8	4	4	4	6	6	
Entladearbeit	MWh _{el}	8.000	100	0,02	6,4	1.200	240	Stromäquivalent
	MWh _{th}	-	-	-	8	1.200	1.200	
Lebensdauer in Zyklen		14.600	5.000	2.500	3.750	2.775	2.775	PsP: 40 a, WSp: 15 a
Zyklen pro Jahr		365	365	200	250	185	185	
Invest	in tEUR	600.000	50.000	20	150	14.000	14.000	
Invest	in €/MWh Kapazität	75.000	500.000	1.000.000	23.438	11.667	58.333	
Capex	in €/Entladeyzklus	106.849	11.000	9	60	7.568	7.568	
Capex	in €/MWh / Zyklus	13	110	440	9	6	32	
Wirkungsgrad		80%	95%	90%	98%	98%	98%	
Kosten	pro MWh _{el}	17	116	489	10	6	32	

- Überschlagsrechnung ohne Betriebskosten
- Abschätzungen zu Invest, Wirkungsgrad und Zyklen, je nach Projekt ergeben sich deutliche Unterschiede
- Grundsätzlich ist ein Wärmespeicher wegen der Abhängigkeit vom Wärmebedarf "nur" ca. 50% der Zeit einsatzfähig, dennoch sind seine Fixkosten (mit Berücksichtigung der Verluste) geringer als die von Stromspeichern (PSK, Batterie)

Agenda

- Energiemarkt 2013
- KWK-Regelkraftwerke: Chancen und Risiken
- Wärmespeicher als Element der Flexibilisierung
 - Warum KWK ?
 - Technologien und Einsatzmöglichkeiten
 - Wärmespeicher: der "bessere" Stromspeicher?
- Flexibles Großmotorenkraftwerk mit Wärmespeicher
 - Gasmotoren contra Gasturbinen
 - Einsatzstrategien
- Fazit und Ausblick

Ausgangssituation: Fernwärmeversorgung mit Heizkraftwerken

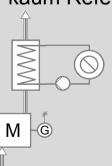
- Viele kommunale Fernwärmenetze deutscher Mittelstädte im Bereich 500-1.000 GWh/a
 Wärmebedarf werden aus Heizkraftwerken mittlerer Baugröße versorgt
 - wenn keine Auskopplung aus Müllverbrennungsanlagen oder Großkraftwerken möglich ist
- Brennstoff ist in der Regel Kohle oder Erdgas
- Diese Netze sind für Großkraftwerke (z.B. 400-550 MW GuD) i.d. R. zu klein und für dezentrale Lösungen (z.B. 2 MW Blockheizkraftwerke) zu groß
- Akzeptanz (Kohle) und Wirtschaftlichkeit (Gas) haben sich in den letzten Jahren deutlich verschlechtert, neue innenstadtnahe Kohleanlagen sind kaum umsetzbar
- Die folgenden Folien sind anonymisierte Darstellungen aus einem aktuellen Projekt dieser Leistungsklasse

Gasmotoren und Gasturbinen als KWK-Regelkraftwerke: Chancen und Risiken

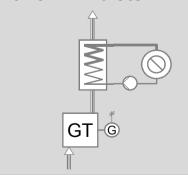
Chancen

- Spread zwischen Gas und Strom steigt wieder
 - Zumindest in einer ausreichenden Anzahl an Stunden / Jahr zur Wärmeerzeugung
- Wieder Steigende CO₂-Preise verbessern Wettbewerbsfähigkeit
- Chance auf Zusatzerlöse aus Regelenergie,
- Teilnahme am Kapazitätsmarkt
- Flexible Gas KWK kann fluktuierende Erneuerbare teilweise ausregeln

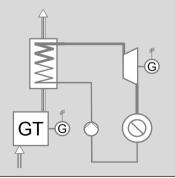
Risiken


- Strompreise (Großhandel) sinkt weiter
- Keine Kapazitätsprämie / sinkende Regelenergievergütung
- CO₂ Kosten treffen nur "die Großen Erzeuger" = FW-Endkunden haben günstige Alternativen (Gasheizung ohne CO₂ Kosten)

Grundsatzfrage: Vergleich Motor / Gasturbine / GuD


Motor

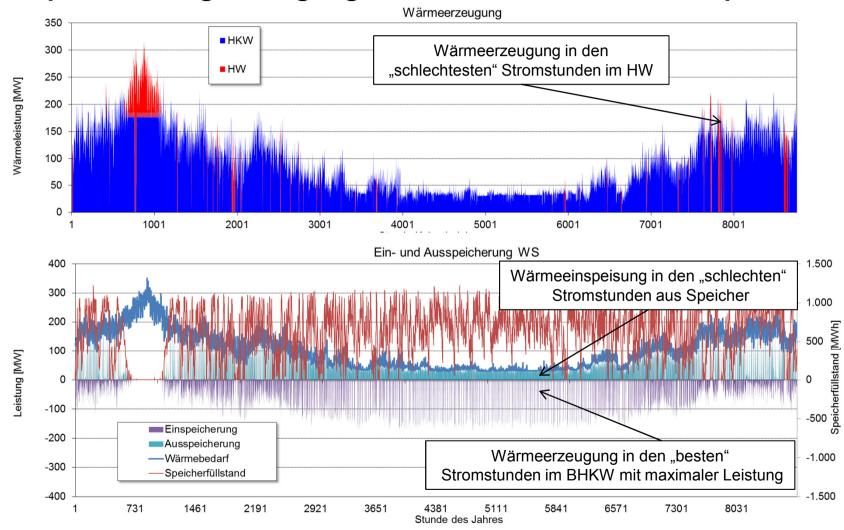
- Schnellstartfähig (SRL <5 Min)
- Hohe elektrischer
 Wirkungsgrad, auch in Teillast (modular)
- Höhere Wartungskosten (rd. 6 EUR/MWh)
- Keine Startkosten
- Ausführung modular, üblich 1-20 Module
- 4-5 Anbieter am Markt (aber kaum Referenzen in D)


Gasturbine

- Schnellstartfähigkeit ohne Referenz
- Geringer elektrischer Wirkungsgrad
- Geringe Wartungskosten rd. 4 EUR/MWh
- Geringe Startkosten
- Ausführung üblicherweise möglich in 2– 4 Modulen
- Rd. 3-4 Anbieter

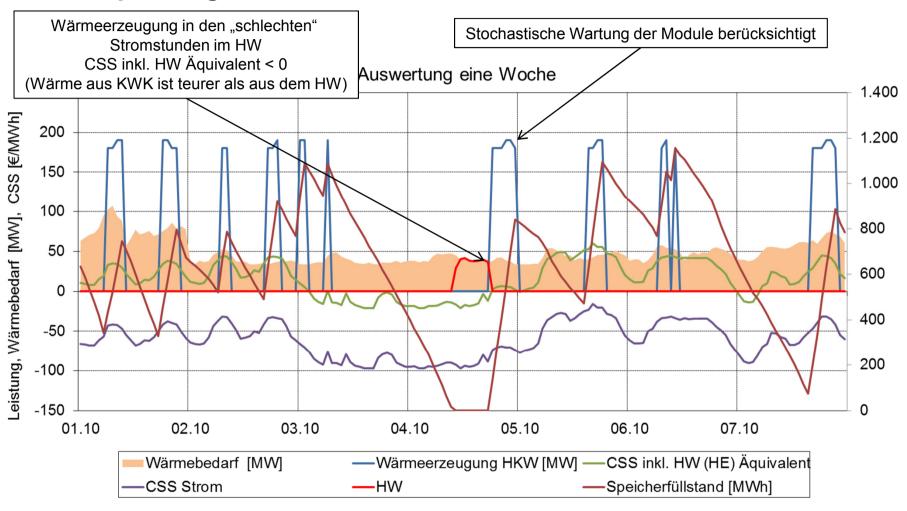
GuD

- Kein Schnellstart (> 60 Min)
- Hohe elektrischer Wirkungsgrad im Strombetrieb
- Geringe Wartungskosten 3-4 EUR/MWh
- Hohe Startkosten
- Ausführung bis 250
 MW th in einer Anlage
- Hohe Gasleistung

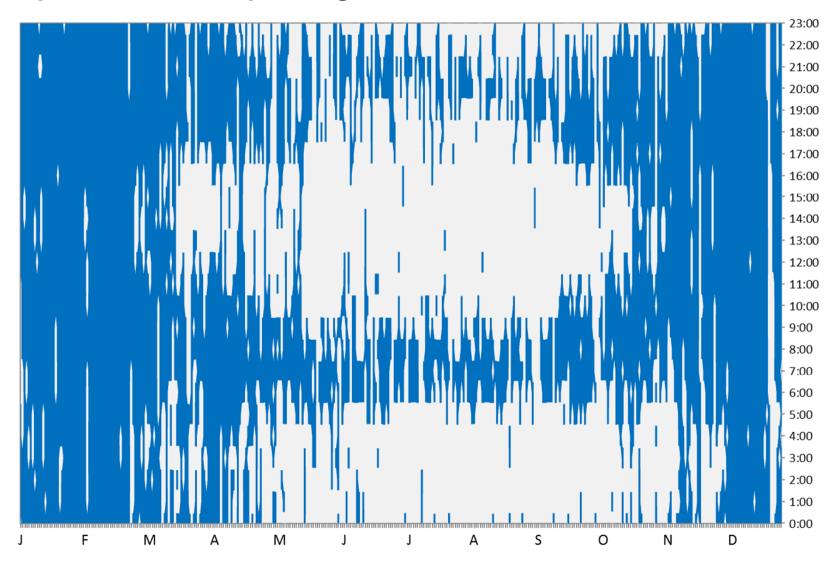


Praxisbeispiel: MW Großmotorenkraftwerk mit Wärmespeicher

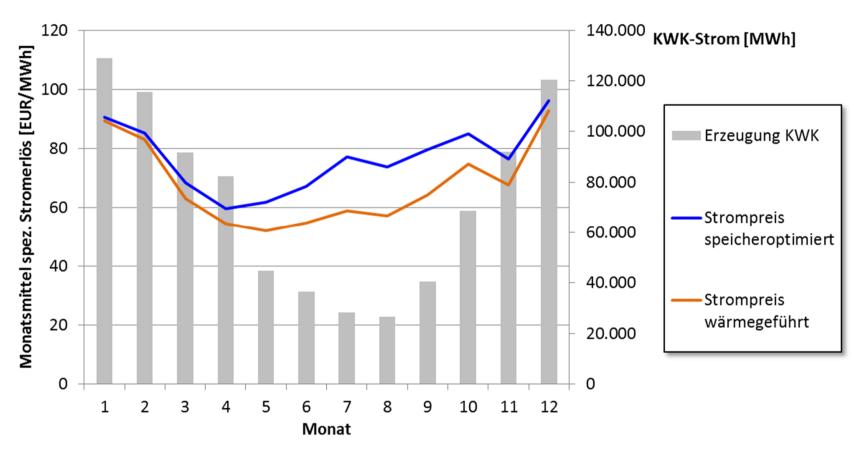
- Berechnung für 100-200 MW Wärmeleistung (rd. 5.500/ 4.000 Bh/a)
 - Modularer Aufbau mit bis zu 20 Motoren der 10 MW Klasse
 - Weltweit 5- 7 Anbieter in der 10 MW Klasse
- Schnellstart- und Stoppfähig <= 5 Minuten (SRL)
- Wärmespeicher für rd. 6 h Volllast (Atmosphärischer Speicher mit 15-30.000 m³)
- Vorlauftemperatur der Motoren 110 °C (Durch Verschaltung auch bis 120°C)
- Option Bypass für reine Stromerzeugung (Pos. SRL im Sommer)
- Stromeinspeisung ins 110 kV Netz
- Wirtschaftliche Eckdaten
 - Investition: rd. 1200 EUR/kW_{el} (inkl. Planung Anbindung, Grundstück, Speicher und BZZ)
 - var. Wartungskosten: rd. 6 EUR/MWh (z. Vergleich: Gud/GT: rd. 4 EUR/MWh)
- Technische Eckdaten
 - Nutzungsgrad elektrisch: 43,7 % (netto)
 - Nutzungsgrad thermisch: 42,5%
 - Keine Startrestriktionen
 - Startrampe in 5 Minuten möglich
- Energieszenario nach WEO 2012, NPS Szenario in Verbindung mit Enerko Strommarktmodell



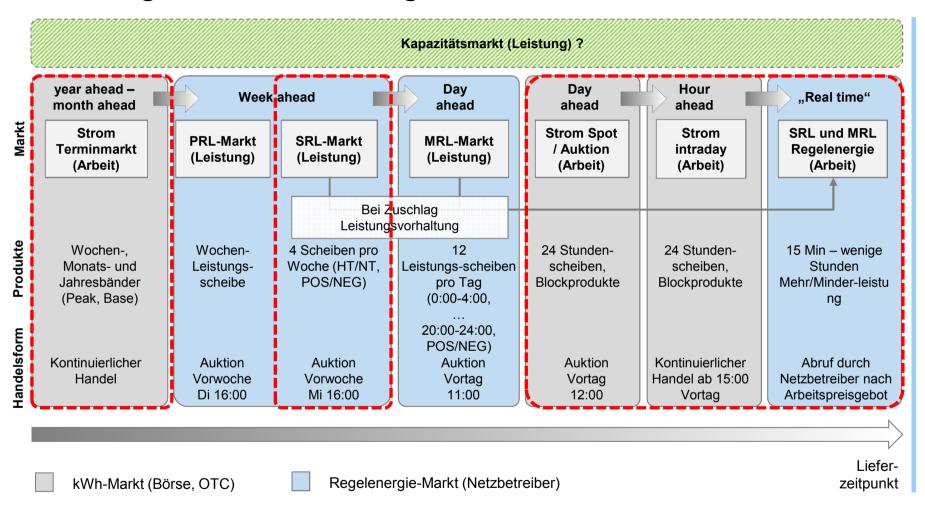
Einsatzplanung: Flexible Erzeugung in Stunden hoher Strompreise – Beispielrechnung Auslegung mit 200 MW und 30.000 m³ Speicher


Einsatzplanung: Detail eine Winterwoche

Spitzen HW Einsatz, wenn KWK zur Wärmeabdeckung nicht ausreicht



Beispielhafte Einsatzplanung in der Jahresbilanz


Einsatzplanung: Effekt der Optimierung auf spezifische und absolute Stromerlöse

- Die konsequente Speicheroptimierung führt zu bis zu 25% höheren spezifischen Stromerlösen
- Maximaler Effekt im Sommer (aber bei minimaler Menge)
- Mehrerlös pro Jahr szenarioabhängig je nach Marktvolatilität 2,5-5 Mio. EUR/a

Ziel: Die gesamte Vermarktungskette am Strommarkt nutzen!

 Alle Vermarktungs- und Flexibilisierungsmöglichkeiten müssen genutzt werden, um einen akzeptablem Wärmepreis zu erhalten!

Fazit / Ausblick

- Gasturbinen und Gasmotorenkraftwerke sind unter den heutigen Marktbedingungen im mittleren Leistungsbereich bis 200 kWel eine Alternative zu GuD
- Eine Lösung mit großen Gasmotoren und Tagesspeicher bietet Vorteile:
 - Kleinste Baugröße, modulare Bauweise (erweiterbar/rückbaubar)
 - Günstige Investitionskosten
 - Bester Gesamtnutzungsgrad
 - Flexibel (Option SRL, Beste Prognose + Intraday-Optimierung)
 - Wirtschaftlich tragfähig über ein breites Spektrum an möglichen Preisszenarien
- Der Wärmespeicher führt zu einem deutlich bessern Ergebnis und erlaubt flexible Vermarktungsstrategien (Strommarktgeführt, Fahrpläne, Regelenergie)
- Trotzdem bleibt die wirtschaftliche Situation für KWK-Kraftwerke sehr schwierig => Wärmegestehungskosten unter 30 EUR/MWh sind z.Z. unrealistisch!
- KWK-Förderung und Kapazitätsprämien sind unverzichtbar zur Absicherung der Investitionsrisiken

